
163

C H A P T E R 14

Recurrent Neural Networks:
Modeling Sequences and Stacks
When dealing with language data, it is very common to work with sequences, such as words (se-
quences of letters), sentences (sequences of words), and documents. We saw how feed-forward
networks can accommodate arbitrary feature functions over sequences through the use of vector
concatenation and vector addition (CBOW). In particular, the CBOW representations allows to
encode arbitrary length sequences as fixed sized vectors. However, the CBOW representation is
quite limited, and forces one to disregard the order of features. e convolutional networks also
allow encoding a sequence into a fixed size vector. While representations derived from convolu-
tional networks are an improvement over the CBOW representation as they offer some sensitivity
to word order, their order sensitivity is restricted to mostly local patterns, and disregards the order
of patterns that are far apart in the sequence.¹

Recurrent neural networks (RNNs) [Elman, 1990] allow representing arbitrarily sized se-
quential inputs in fixed-size vectors, while paying attention to the structured properties of the in-
puts. RNNs, particularly ones with gated architectures such as the LSTM and the GRU, are very
powerful at capturing statistical regularities in sequential inputs. ey are arguably the strongest
contribution of deep-learning to the statistical natural-language processing tool-set.

is chapter describes RNNs as an abstraction: an interface for translating a sequence of
inputs into a fixed sized output, that can then be plugged as components in larger networks.
Various architectures that use RNNs as a component are discussed. In the next chapter, we deal
with concrete instantiations of the RNN abstraction, and describe the Elman RNN (also called
Simple RNN), the Long-short-term Memory (LSTM), and the Gated Recurrent Unit (GRU).
en, in Chapter 16 we consider examples of modeling NLP problems using with RNNs.

In Chapter 9, we discussed language modeling and the Markov assumption. RNNs allow
for language models that do not make the Markov assumption, and condition the next word on
the entire sentence history (all the words preceding it). is ability opens the way to conditioned
generation models, where a language model that is used as a generator is conditioned on some
other signal, such as a sentence in another language. Such models are described in more depth in
Chapter 17.

¹However, as discussed in Section 13.3, hierarchical and dilated convolutional architectures do have the potential of capturing
relatively long-range dependencies within a sequence.



164 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS

14.1 THE RNN ABSTRACTION
We use xi Wj to denote the sequence of vectors xi ; : : : ; xj . On a high-level, the RNN is a function
that takes as input an arbitrary length ordered sequence of n din-dimensional vectors x1Wn D

x1; x2; : : : ; xn, (xi 2 Rdin) and returns as output a single dout dimensional vector yn 2 Rdout :

yn D RNN.x1Wn/ (14.1)

xi 2 Rdin yn 2 Rdout :

is implicitly defines an output vector yi for each prefix x1Wi of the sequence x1Wn. We
denote by RNN? the function returning this sequence:

y1Wn D RNN?.x1Wn/

yi D RNN.x1Wi /
(14.2)

xi 2 Rdin yi 2 Rdout :

e output vector yn is then used for further prediction. For example, a model for predict-
ing the conditional probability of an event e given the sequence x1Wn can be defined as p.e D

j jx1Wn/ D softmax.RNN.x1Wn/ �W C b/Œj �, the j th element in the output vector resulting from
the softmax operation over a linear transformation of the RNN encoding yn D RNN.x1Wn/. e
RNN function provides a framework for conditioning on the entire history x1; : : : ; xi without
resorting to the Markov assumption which is traditionally used for modeling sequences, described
in Chapter 9. Indeed, RNN-based language models result in very good perplexity scores when
compared to ngram-based models.

Looking in a bit more detail, the RNN is defined recursively, by means of a function R

taking as input a state vector si�1 and an input vector xi and returning a new state vector si .
e state vector si is then mapped to an output vector yi using a simple deterministic function
O.�/.² e base of the recursion is an initial state vector, s0, which is also an input to the RNN.
For brevity, we often omit the initial vector s0, or assume it is the zero vector.

When constructing an RNN, much like when constructing a feed-forward network, one
has to specify the dimension of the inputs xi as well as the dimensions of the outputs yi . e
dimensions of the states si are a function of the output dimension.³

²Using the O function is somewhat non-standard, and is introduced in order to unify the different RNN models to to be
presented in the next chapter. For the Simple RNN (Elman RNN) and the GRU architectures, O is the identity mapping,
and for the LSTM architecture O selects a fixed subset of the state.
³While RNN architectures in which the state dimension is independent of the output dimension are possible, the current
popular architectures, including the Simple RNN, the LSTM, and the GRU do not follow this flexibility.



14.1. THE RNN ABSTRACTION 165

RNN?.x1WnI s0/ Dy1Wn

yi DO.si /

si DR.si�1; xi /

(14.3)

xi 2 Rdin ; yi 2 Rdout ; si 2 Rf .dout/:

e functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector si that is kept and being passed across
invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 14.1.

yi

R, O

xi

si-1 si

θ

Figure 14.1: Graphical representation of an RNN (recursive).

is presentation follows the recursive definition, and is correct for arbitrarily long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite) one
can unroll the recursion, resulting in the structure in Figure 14.2.
While not usually shown in the visualization, we include here the parameters � in order to high-
light the fact that the same parameters are shared across all time steps. Different instantiations of
R and O will result in different network structures, and will exhibit different properties in terms
of their running times and their ability to be trained effectively using gradient-based methods.
However, they all adhere to the same abstract interface. We will provide details of concrete in-
stantiations of R and O—the Simple RNN, the LSTM, and the GRU—in Chapter 15. Before
that, let’s consider working with the RNN abstraction.



166 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS

y1

x1

s0 R, O
s1

y2

x2

R, O
s2

y3

x3

R, O
s3

y4

x4

R, O
s4

y5

x5

R, O s5

θ

Figure 14.2: Graphical representation of an RNN (unrolled).

First, we note that the value of si (and hence yi ) is based on the entire input x1; : : : ; xi .
For example, by expanding the recursion for i D 4 we get:

s4 DR.s3; x4/

DR.

s3‚ …„ ƒ
R.s2; x3/; x4/

DR.R.

s2‚ …„ ƒ
R.s1; x2/; x3/; x4/

DR.R.R.

s1‚ …„ ƒ
R.s0; x1/; x2/; x3/; x4/:

(14.4)

us, sn and yn can be thought of as encoding the entire input sequence.⁴ Is the encoding
useful? is depends on our definition of usefulness. e job of the network training is to set the
parameters of R and O such that the state conveys useful information for the task we are tying to
solve.

14.2 RNN TRAINING
Viewed as in Figure 14.2 it is easy to see that an unrolled RNN is just a very deep neural network
(or rather, a very large computation graph with somewhat complex nodes), in which the same pa-
rameters are shared across many parts of the computation, and additional input is added at various
layers. To train an RNN network, then, all we need to do is to create the unrolled computation
graph for a given input sequence, add a loss node to the unrolled graph, and then use the backward
⁴Note that, unless R is specifically designed against this, it is likely that the later elements of the input sequence have stronger
effect on sn than earlier ones.



14.3. COMMON RNN USAGE-PATTERNS 167

(backpropagation) algorithm to compute the gradients with respect to that loss. is procedure
is referred to in the RNN literature as backpropagation through time (BPTT) [Werbos, 1990].⁵

What is the objective of the training? It is important to understand that the RNN does not
do much on its own, but serves as a trainable component in a larger network. e final prediction
and loss computation are performed by that larger network, and the error is back-propagated
through the RNN. is way, the RNN learns to encode properties of the input sequences that are
useful for the further prediction task. e supervision signal is not applied to the RNN directly,
but through the larger network.

Some common architectures of integrating the RNN within larger networks are given be-
low.

14.3 COMMON RNN USAGE-PATTERNS
14.3.1 ACCEPTOR
One option is to base the supervision signal only at the final output vector, yn. Viewed this way,
the RNN is trained as an acceptor. We observe the final state, and then decide on an outcome.⁶ For
example, consider training an RNN to read the characters of a word one by one and then use the
final state to predict the part-of-speech of that word (this is inspired by Ling et al. [2015b]), an
RNN that reads in a sentence and, based on the final state decides if it conveys positive or negative
sentiment (this is inspired by Wang et al. [2015b]) or an RNN that reads in a sequence of words
and decides whether it is a valid noun-phrase. e loss in such cases is defined in terms of a
function of yn D O.sn/. Typically, the RNN’s output vector yn is fed into a fully connected layer
or an MLP, which produce a prediction. e error gradients are then backpropagated through the
rest of the sequence (see Figure 14.3).⁷ e loss can take any familiar form: cross entropy, hinge,
margin, etc.

14.3.2 ENCODER
Similar to the acceptor case, an encoder supervision uses only the final output vector, yn. However,
unlike the acceptor, where a prediction is made solely on the basis of the final vector, here the

⁵Variants of the BPTT algorithm include unrolling the RNN only for a fixed number of input symbols at each time: first
unroll the RNN for inputs x1Wk , resulting in s1Wk . Compute a loss, and backpropagate the error through the network (k
steps back). en, unroll the inputs xkC1W2k , this time using sk as the initial state, and again backpropagate the error for k
steps, and so on. is strategy is based on the observations that for the Simple RNN variant, the gradients after k steps tend
to vanish (for large enough k), and so omitting them is negligible. is procedure allows training of arbitrarily long sequences.
For RNN variants such as the LSTM or the GRU that are designed specifically to mitigate the vanishing gradients problem,
this fixed size unrolling is less motivated, yet it is still being used, for example when doing language modeling over a book
without breaking it into sentences. A similar variant unrolls the network for the entire sequence in the forward step, but only
propagates the gradients back for k steps from each position.
⁶e terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite number of states,
making it necessary to rely on a function other than a lookup table for mapping states to decisions.
⁷is kind of supervision signal may be hard to train for long sequences, especially so with the Simple RNN, because of the
vanishing gradients problem. It is also a generally hard learning task, as we do not tell the process on which parts of the input
to focus. Yet, it does work very well in many cases.



168 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS

x1

s0 R, O
s1

x2

R, O
s2

x3

R, O
s3

x4

R, O
s4

x5

R, O

y5

predict and

calculate loss

loss

Figure 14.3: Acceptor RNN training graph.

final vector is treated as an encoding of the information in the sequence, and is used as additional
information together with other signals. For example, an extractive document summarization
system may first run over the document with an RNN, resulting in a vector yn summarizing
the entire document. en, yn will be used together with other features in order to select the
sentences to be included in the summarization.

14.3.3 TRANSDUCER
Another option is to treat the RNN as a transducer, producing an output Oti for each input it
reads in. Modeled this way, we can compute a local loss signal Llocal. Oti ; ti / for each of the out-
puts Oti based on a true label ti . e loss for unrolled sequence will then be: L.Ot1Wn; t1Wn/ DPn

iD1 Llocal.Oti ; ti /, or using another combination rather than a sum such as an average or a
weighted average (see Figure 14.4). One example for such a transducer is a sequence tagger, in
which we take xi Wn to be feature representations for the n words of a sentence, and ti as an input
for predicting the tag assignment of word i based on words 1:i . A CCG super-tagger based on
such an architecture provides very strong CCG super-tagging results [Xu et al., 2015], although
in many cases a transducer based on a bi-directional RNN (biRNN, see Section 14.4 below) is a
better fit for such tagging problems.

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1Wi is used to predict a distribution over the .i C 1/th word. RNN-based
language models are shown to provide vastly better perplexities than traditional language models
[Jozefowicz et al., 2016, Mikolov, 2012, Mikolov et al., 2010, Sundermeyer et al., 2012].

Using RNNs as transducers allows us to relax the Markov assumption that is traditionally
taken in language models and HMM taggers, and condition on the entire prediction history.



14.4. BIDIRECTIONAL RNNS (BIRNN) 169

x1

s0 R, O
s1

x2

R, O
s2

x3

R, O
s3

x4

R, O
s4

x5

R, O

y5y4y3y2y1

predict and

calculate loss

predict and

calculate loss

predict and

calculate loss

predict and

calculate loss

predict and

calculate loss

loss

sum

Figure 14.4: Transducer RNN training graph.

Special cases of the RNN transducer is the RNN generator, and the related conditioned-
generation (also called encoder-decoder) and the conditioned-generation with attention architectures.
ese will be discussed in Chapter 17.

14.4 BIDIRECTIONAL RNNS (BIRNN)
A useful elaboration of an RNN is a bidirectional-RNN (also commonly referred to as biRNN)
[Graves, 2008, Schuster and Paliwal, 1997].⁸ Consider the task of sequence tagging over a sen-
tence x1; : : : ; xn. An RNN allows us to compute a function of the i th word xi based on the
past—the words x1Wi up to and including it. However, the following words xiC1Wn may also be
useful for prediction, as is evident by the common sliding-window approach in which the focus
word is categorized based on a window of k words surrounding it. Much like the RNN relaxes the
Markov assumption and allows looking arbitrarily back into the past, the biRNN relaxes the fixed
window size assumption, allowing to look arbitrarily far at both the past and the future within
the sequence.

Consider an input sequence x1Wn. e biRNN works by maintaining two separate states,
s

f

i
and sb

i
for each input position i . e forward state s

f

i
is based on x1; x2; : : : ; xi , while the

backward state sb
i

is based on xn; xn�1; : : : ; xi . e forward and backward states are generated
by two different RNNs. e first RNN (Rf , Of ) is fed the input sequence x1Wn as is, while
the second RNN (Rb , Ob) is fed the input sequence in reverse. e state representation si is

⁸When used with a specific RNN architecture such as an LSTM, the model is called biLSTM.



170 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS

then composed of both the forward and backward states. e output at position i is based on the
concatenation of the two output vectors yi D Œy

f

i
Iyb

i
� D ŒOf .s

f

i
/IOb.sb

i
/�, taking into account

both the past and the future. In other words, yi , the biRNN encoding of the i th word in a
sequence is the concatenation of two RNNs, one reading the sequence from the beginning, and
the other reading it from the end.

We define biRNN.x1Wn; i/ to be the output vector corresponding to the i th sequence po-
sition:⁹

biRNN.x1Wn; i/ D yi D ŒRNNf .x1Wi /IRNNb.xnWi /�: (14.6)

e vector yi can then be used directly for prediction, or fed as part of the input to a more
complex network. While the two RNNs are run independently of each other, the error gradients
at position i will flow both forward and backward through the two RNNs. Feeding the vector yi

through an MLP prior to prediction will further mix the forward and backward signals. Visual
representation of the biRNN architecture is given in Figure 14.5.

xthe
1

s0 s0R f,O f R f,O f R f,O f R f,O f Rb,Ob Rb,Ob Rb,Ob Rb,Ob

xbrown
2

xfox
3

xjumped
4

xjumped
5

xover
6

xthe
7

xdog
8

y4y4

concat

f r

Figure 14.5: Computing the biRNN representation of the word jumped in the sentence “the brown
fox jumped over the dog.”

Note how the vector y4, corresponding to the word jumped, encodes an infinite window
around (and including) the focus vector xjumped.

Similarly to the RNN case, we also define biRNN?
.x1Wn/ as the sequence of vectors y1Wn:

biRNN?
.x1Wn/ D yi Wn D biRNN.x1Wn; 1/; : : : ; biRNN.x1Wn; n/: (14.7)

⁹e biRNN vector can either a simple concatenation of the two RNN vectors as in Equation (14.6), or followed by another
linear-transformation to reduce its dimension, often back to the dimension of the single RNN input:

biRNN.x1Wn; i/ D yi D ŒRNNf .x1Wi /I RNNb.xnWi /�W : (14.5)
is is variant is often used when stacking several biRNNs on top of each other as discussed in Section 14.5.



14.5. MULTI-LAYER (STACKED) RNNS 171

e n output vectors yi Wn can be efficiently computed in linear time by first running the
forward and backward RNNs, and then concatenating the relevant outputs. is architecture is
depicted in Figure 14.6.

xthe

Rb,Ob Rb,Ob Rb,Ob Rb,Ob Rb,Ob 

xbrown xfox xjumped x*

ythe ybrown yfox yjumped y*

y4y5

concat concat concat concat concat

b

b

b y2y3
b b y1

b

y2y1
f f y4y3

f f y5
f

s5
bs4

bs3
bs2

bs1
bs0

R f,O f R f,O f R f,O f R f,O f R f,O f 
fs0

fs1
fs2

fs3
fs4

fs5

Figure 14.6: Computing the biRNN? for the sentence “the brown fox jumped.”

e biRNN is very effective for tagging tasks, in which each input vector corresponds to
one output vector. It is also useful as a general-purpose trainable feature-extracting component,
that can be used whenever a window around a given word is required. Concrete usage examples
are given in Chapter 16.

e use of biRNNs for sequence tagging was introduced to the NLP community by Irsoy
and Cardie [2014].

14.5 MULTI-LAYER (STACKED) RNNS
RNNs can be stacked in layers, forming a grid [Hihi and Bengio, 1996]. Consider k RNNs,
RNN1; : : : ; RNNk , where the j th RNN has states s

j

1Wn
and outputs y

j

1Wn
. e input for the first

RNN are x1Wn, while the input of the j th RNN (j � 2) are the outputs of the RNN below
it, y

j �1

1Wn
. e output of the entire formation is the output of the last RNN, yk

1Wn
. Such layered

architectures are often called deep RNNs. A visual representation of a three-layer RNN is given
in Figure 14.7. biRNNs can be stacked in a similar fashion.¹⁰

¹⁰e term deep-biRNN is used in the literature to describe to different architecture: in the first, the biRNN state is a concate-
nation of two deep RNNs. In the second, the output sequence of on biRNN is fed as input to another. My research group
found the second variant to often performs better.



172 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS

R3,O3
 R3,O3

 R3,O3
 R3,O3

 R3,O3
 

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

y2y1
3

3

3 y4y3
3 3 y5

3

y2y1
2 2 y4y3

2 2 y5
2

s0
3s1

3s2
3s3

3s4
3s5

R2,O2
 R2,O2

 R2,O2
 R2,O2

 R2,O2
 

2

y2y1
1 1 y4y3

1 1 y5
1

s0
2s1

2s2
2s3

2s4
2s5

R1,O1
 R1,O1

 R1,O1
 R1,O1

 R1,O1
 

1s0
1s1

1s2
1s3

1s4
1s5

Figure 14.7: A three-layer (“deep”) RNN architecture.

While it is not theoretically clear what is the additional power gained by the deeper archi-
tecture, it was observed empirically that deep RNNs work better than shallower ones on some
tasks. In particular, Sutskever et al. [2014] report that a four-layers deep architecture was crucial
in achieving good machine-translation performance in an encoder-decoder framework. Irsoy and
Cardie [2014] also report improved results from moving from a one-layer biRNN to an architec-
ture with several layers. Many other works report result using layered RNN architectures, but do
not explicitly compare to one-layer RNNs. In the experiment of my research group, using two or
more layers indeed often improves over using a single one.

14.6 RNNS FOR REPRESENTING STACKS
Some algorithms in language processing, including those for transition-based parsing [Nivre,
2008], require performing feature extraction over a stack. Instead of being confined to looking at
the k top-most elements of the stack, the RNN framework can be used to provide a fixed-sized
vector encoding of the entire stack.

e main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting in a
final encoding of the entire stack. In order to do this computation efficiently (without performing
an O.n/ stack encoding operation each time the stack changes), the RNN state is maintained
together with the stack state. If the stack was push-only, this would be trivial: whenever a new



14.6. RNNS FOR REPRESENTING STACKS 173

element x is pushed into the stack, the corresponding vector x will be used together with the RNN
state si in order to obtain a new state siC1. Dealing with pop operation is more challenging, but
can be solved by using the persistent-stack data-structure [Goldberg et al., 2013, Okasaki, 1999].
Persistent, or immutable, data-structures keep old versions of themselves intact when modified.
e persistent stack construction represents a stack as a pointer to the head of a linked list. An
empty stack is the empty list. e push operation appends an element to the list, returning the
new head. e pop operation then returns the parent of the head, but keeping the original list
intact. From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying this
procedure throughout the lifetime of the stack results in a tree, where the root is an empty stack
and each path from a node to the root represents an intermediary stack state. Figure 14.8 provides
an example of such a tree. e same process can be applied in the computation graph construction,
creating an RNNwith a tree structure instead of a chain structure. Backpropagating the error from
a given node will then affect all the elements that participated in the stack when the node was
created, in order. Figure 14.9 shows the computation graph for the stack-RNN corresponding to
the last state in Figure 14.8. is modeling approach was proposed independently by Dyer et al.
[2015] and Watanabe and Sumita [2015] for transition-based dependency parsing.

⊥ ⊥ ⊥ ⊥ ⊥

⊥⊥⊥⊥

a a b a b c a b c a b c

d

a b c

d

e

a b c

d

a b c

d

a b c

d

e f

head

head head

head head head

head

headhead

(1) push a (2) push b (3) push c (4) pop (5) push d

(6) pop (7) pop (8) push e (9) push f

Figure 14.8: An immutable stack construction for the sequence of operations push a; push b; push c;
pop; push d; pop; pop; push e; push f.



174 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS

xa

s0 R, O
sa

sa

xb

R, O
sa,b

sa,b

sa,e

xc

R, O sa,b,c

ya ya,b ya,b,c xd

R, O sa,b,d

xe

R, O

ya,b,d

sa,e,f

ya,e,fya,e

xf

R, O

Figure 14.9: e stack-RNN corresponding to the final state in Figure 14.8.

14.7 A NOTE ON READING THE LITERATURE
Unfortunately, it is often the case that inferring the exact model form from reading its description
in a research paper can be quite challenging. Many aspects of the models are not yet standardized,
and different researchers use the same terms to refer to slightly different things. To list a few
examples, the inputs to the RNN can be either one-hot vectors (in which case the embedding
matrix is internal to the RNN) or embedded representations; the input sequence can be padded
with start-of-sequence and/or end-of-sequence symbols, or not; while the output of an RNN
is usually assumed to be a vector which is expected to be fed to additional layers followed by a
softmax for prediction (as is the case in the presentation in this tutorial), some papers assume
the softmax to be part of the RNN itself; in multi-layer RNN, the “state vector” can be either
the output of the top-most layer, or a concatenation of the outputs from all layers; when using
the encoder-decoder framework, conditioning on the output of the encoder can be interpreted in
various different ways; and so on. On top of that, the LSTM architecture described in the next



14.7. A NOTE ON READING THE LITERATURE 175

section has many small variants, which are all referred to under the common name LSTM. Some
of these choices are made explicit in the papers, other require careful reading, and others still are
not even mentioned, or are hidden behind ambiguous figures or phrasing.

As a reader, be aware of these issues when reading and interpret model descriptions. As a
writer, be aware of these issues as well: either fully specify your model in mathematical notation,
or refer to a different source in which the model is fully specified, if such a source is available.
If using the default implementation from a software package without knowing the details, be
explicit of that fact and specify the software package you use. In any case, don’t rely solely on
figures or natural language text when describing your model, as these are often ambiguous.


	Specialized Architectures
	Recurrent Neural Networks: Modeling Sequences and Stacks
	The RNN Abstraction
	RNN Training
	Common RNN Usage-patterns
	Acceptor
	Encoder
	Transducer

	Bidirectional RNNs (biRNN)
	Multi-layer (stacked) RNNs
	RNNs for Representing Stacks
	A Note on Reading the Literature



