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C H A P T E R 2

Learning Basics
and Linear Models

Neural networks, the topic of this book, are a class of supervised machine learning algorithms.
is chapter provides a quick introduction to supervised machine learning terminology and

practices, and introduces linear and log-linear models for binary and multi-class classification.
e chapter also sets the stage and notation for later chapters. Readers who are familiar with

linear models can skip ahead to the next chapters, but may also benefit from reading Sections 2.4
and 2.5.

Supervisedmachine learning theory and linear models are very large topics, and this chapter
is far from being comprehensive. For a more complete treatment the reader is referred to texts
such as Daumé III [2015], Shalev-Shwartz and Ben-David [2014], and Mohri et al. [2012].

2.1 SUPERVISED LEARNING AND PARAMETERIZED
FUNCTIONS

e essence of supervised machine learning is the creation of mechanisms that can look at exam-
ples and produce generalizations. More concretely, rather than designing an algorithm to perform
a task (“distinguish spam from non-spam email”), we design an algorithm whose input is a set
of labeled examples (“is pile of emails are spam. is other pile of emails are not spam.”), and
its output is a function (or a program) that receives an instance (an email) and produces the de-
sired label (spam or not-spam). It is expected that the resulting function will produce correct label
predictions also for instances it has not seen during training.

As searching over the set of all possible programs (or all possible functions) is a very hard
(and rather ill-defined) problem, we often restrict ourselves to search over specific families of
functions, e.g., the space of all linear functions with din inputs and dout outputs, or the space of all
decision trees over din variables. Such families of functions are called hypothesis classes. By restrict-
ing ourselves to a specific hypothesis class, we are injecting the learner with inductive bias—a set
of assumptions about the form of the desired solution, as well as facilitating efficient procedures
for searching for the solution. For a broad and readable overview of the main families of learning
algorithms and the assumptions behind them, see the book by Domingos [2015].

e hypothesis class also determines what can and cannot be represented by the learner.
One common hypothesis class is that of high-dimensional linear function, i.e., functions of the
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form:¹
f .x/ D x �W C b (2.1)

x 2 Rdin W 2 Rdin�dout b 2 Rdout :

Here, the vector x is the input to the function, while the matrix W and the vector b are
the parameters. e goal of the learner is to set the values of the parameters W and b such that
the function behaves as intended on a collection of input values x1Wk D x1; : : : ; xk and the corre-
sponding desired outputs y1Wk D y i ; : : : ; yk . e task of searching over the space of functions is
thus reduced to one of searching over the space of parameters. It is common to refer to parameters
of the function as ‚. For the linear model case, ‚ D W ; b. In some cases we want the notation
to make the parameterization explicit, in which case we include the parameters in the function’s
definition: f .xIW ; b/ D x �W C b.

As we will see in the coming chapters, the hypothesis class of linear functions is rather
restricted, and there are many functions that it cannot represent (indeed, it is limited to linear
relations). In contrast, feed-forward neural networks with hidden layers, to be discussed in Chap-
ter 4, are also parameterized functions, but constitute a very strong hypothesis class—they are
universal approximators, capable of representing any Borel-measurable function.² However, while
restricted, linear models have several desired properties: they are easy and efficient to train, they
often result in convex optimization objectives, the trained models are somewhat interpretable,
and they are often very effective in practice. Linear and log-linear models were the dominant
approaches in statistical NLP for over a decade. Moreover, they serve as the basic building blocks
for the more powerful nonlinear feed-forward networks which will be discussed in later chapters.

2.2 TRAIN, TEST, AND VALIDATION SETS
Before delving into the details of linear models, let’s reconsider the general setup of the machine
learning problem. We are faced with a dataset of k input examples x1Wk and their corresponding
gold labels y1Wk , and our goal is to produce a function f .x/ that correctly maps inputs x to
outputs Oy , as evidenced by the training set. How do we know that the produced function f ./ is
indeed a good one? One could run the training examples x1Wk through f ./, record the answers
Oy1Wk , compare them to the expected labels y1Wk , and measure the accuracy. However, this process
will not be very informative—our main concern is the ability of f ./ to generalize well to unseen
examples. A function f ./ that is implemented as a lookup table, that is, looking for the input x

in its memory and returning the corresponding value y for instances is has seen and a random
value otherwise, will get a perfect score on this test, yet is clearly not a good classification function
as it has zero generalization ability. We rather have a function f ./ that gets some of the training
examples wrong, providing that it will get unseen examples correctly.

¹As discussed in Section 1.7. is book takes a somewhat un-orthodox approach and assumes vectors are row vectors rather
than column vectors.
²See further discussion in Section 4.3.
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Leave-one out Wemust assess the trained function’s accuracy on instances it has not seen during
training. One solution is to perform leave-one-out cross-validation: train k functions f1Wk , each
time leaving out a different input example xi , and evaluating the resulting function fi ./ on its
ability to predict xi . en train another function f ./ on the entire trainings set x1Wk . Assuming
that the training set is a representative sample of the population, this percentage of functions fi ./

that produced correct prediction on the left-out samples is a good approximation of the accuracy
of f ./ on new inputs. However, this process is very costly in terms of computation time, and is
used only in cases where the number of annotated examples k is very small (less than a hundred
or so). In language processing tasks, we very often encounter training sets with well over 105

examples.

Held-out set A more efficient solution in terms of computation time is to split the training set
into two subsets, say in a 80%/20% split, train a model on the larger subset (the training set), and
test its accuracy on the smaller subset (the held-out set). is will give us a reasonable estimate on
the accuracy of the trained function, or at least allow us to compare the quality of different trained
models. However, it is somewhat wasteful in terms training samples. One could then re-train a
model on the entire set. However, as the model is trained on substantially more data, the error
estimates of the model trained on less data may not be accurate. is is generally a good problem
to have, as more training data is likely to result in better rather than worse predictors.³

Some care must be taken when performing the split—in general it is better to shuffle the
examples prior to splitting them, to ensure a balanced distribution of examples between the train-
ing and held-out sets (for example, you want the proportion of gold labels in the two sets to be
similar). However, sometimes a random split is not a good option: consider the case where your
input are news articles collected over several months, and your model is expected to provide pre-
dictions for new stories. Here, a random split will over-estimate the model’s quality: the training
and held-out examples will be from the same time period, and hence on more similar stories,
which will not be the case in practice. In such cases, you want to ensure that the training set has
older news stories and the held-out set newer ones—to be as similar as possible to how the trained
model will be used in practice.

A three-way split e split into train and held-out sets works well if you train a single model
and wants to assess its quality. However, in practice you often train several models, compare their
quality, and select the best one. Here, the two-way split approach is insufficient—selecting the
best model according to the held-out set’s accuracy will result in an overly optimistic estimate of
the model’s quality. You don’t know if the chosen settings of the final classifier are good in general,
or are just good for the particular examples in the held-out sets. e problem will be even worse if
you perform error analysis based on the held-out set, and change the features or the architecture of
the model based on the observed errors. You don’t know if your improvements based on the held-
³Note, however, that some setting in the training procedure, in particular the learning rate and regularization weight may be
sensitive to the training set size, and tuning them based on some data and then re-training a model with the same settings on
larger data may produce sub-optimal results.
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out sets will carry over to new instances. e accepted methodology is to use a three-way split of
the data into train, validation (also called development), and test sets. is gives you two held-out
sets: a validation set (also called development set), and a test set. All the experiments, tweaks, error
analysis, and model selection should be performed based on the validation set. en, a single run
of the final model over the test set will give a good estimate of its expected quality on unseen
examples. It is important to keep the test set as pristine as possible, running as few experiments
as possible on it. Some even advocate that you should not even look at the examples in the test
set, so as to not bias the way you design your model.

2.3 LINEAR MODELS
Now that we have established some methodology, we return to describe linear models for binary
and multi-class classification.

2.3.1 BINARY CLASSIFICATION
In binary classification problems we have a single output, and thus use a restricted version of
Equation (2.1) in which dout D 1, making w a vector and b a scalar.

f .x/ D x �wC b: (2.2)

e range of the linear function in Equation (2.2) is Œ�1;C1�. In order to use it for
binary classification, it is common to pass the output of f .x/ through the sign function, mapping
negative values to �1 (the negative class) and non-negative values to C1 (the positive class).

Consider the task of predicting which of two neighborhoods an apartment is located at,
based on the apartment’s price and size. Figure 2.1 shows a 2D plot of some apartments, where
the x-axis denotes the monthly rent price in USD, while the y-axis is the size in square feet.
e blue circles are for Dupont Circle, DC and the green crosses are in Fairfax, VA. It is evident
from the plot that we can separate the two neighborhoods using a straight line—apartments in
Dupont Circle tend to bemore expensive than apartments in Fairfax of the same size.⁴e dataset
is linearly separable: the two classes can be separated by a straight line.

Each data-point (an apartment) can be represented as a 2-dimensional (2D) vector x where
xŒ0� is the apartment’s size and xŒ1� is its price. We then get the following linear model:

Oy D sign.f .x// D sign.x �wC b/

D sign.size � w1 C price � w2 C b/;

where � is the dot-product operation, b and w D Œw1; w2� are free parameters, and we predict
Fairfax if Oy � 0 and Dupont Circle otherwise. e goal of learning is setting the values of w1,

⁴Note that looking at either size or price alone would not allow us to cleanly separate the two groups.
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Figure 2.1: Housing data: rent price in USD vs. size in square ft. Data source: Craigslist ads, collected
from June 7–15, 2015.

w2, and b such that the predictions are correct for all data-points we observe.⁵ We will discuss
learning in Section 2.7 but for now consider that we expect the learning procedure to set a high
value to w1 and a low value to w2. Once the model is trained, we can classify new data-points by
feeding them into this equation.

It is sometimes not possible to separate the data-points using a straight line (or, in higher di-
mensions, a linear hyperplane)—such datasets are said to be nonlinearly separable, and are beyond
the hypothesis class of linear classifiers. e solution would be to either move to a higher dimen-
sion (add more features), move to a richer hypothesis class, or allow for some mis-classification.⁶

⁵Geometrically, for a given w the points x � w C b D 0 define a hyperplane (which in two dimensions corresponds to a line)
that separates the space into two regions. e goal of learning is then finding a hyperplane such that the classification induced
by it is correct.
⁶Misclassifying some of the examples is sometimes a good idea. For example, if we have reason to believe some of the data-
points are outliers—examples that belong to one class, but are labeled by mistake as belonging to the other class.
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..

Feature Representations In the example above, each data-point was a pair of size and price
measurements. Each of these properties is considered a feature by which we classify the data-
point. is is very convenient, but in most cases the data-points are not given to us directly
as lists of features, but as real-world objects. For example, in the apartments example we
may be given a list of apartments to classify. We then need to make a concious decision and
select the measurable properties of the apartments that we believe will be useful features
for the classification task at hand. Here, it proved effective to focus on the price and the
size. We could also look at additional properties, such as the number of rooms, the height
of the ceiling, the type of floor, the geo-location coordinates, and so on. After deciding on
a set of features, we create a feature extraction function that maps a real world object (i.e.,
an apartment) to a vector of measurable quantities (price and size) which can be used as
inputs to our models. e choice of the features is crucial to the success of the classification
accuracy, and is driven by the informativeness of the features, and their availability to us (the
geo-location coordinates are much better predictors of the neighborhood than the price and
size, but perhaps we only observe listings of past transactions, and do not have access to the
geo-location information). When we have two features, it is easy to plot the data and see the
underlying structures. However, as we see in the next example, we often use many more than
just two features, making plotting and precise reasoning impractical.

A central part in the design of linear models, which we mostly gloss over in this text, is
the design of the feature function (so called feature engineering). One of the promises of deep
learning is that it vastly simplifies the feature-engineering process by allowing the model
designer to specify a small set of core, basic, or “natural” features, and letting the trainable
neural network architecture combine them into more meaningful higher-level features, or
representations. However, one still needs to specify a suitable set of core features, and tie
them to a suitable architecture. We discuss common features for textual data in Chapters 6
and 7.

We usually have many more than two features. Moving to a language setup, consider the
task of distinguishing documents written in English from documents written in German. It turns
out that letter frequencies make for quite good predictors (features) for this task. Even more
informative are counts of letter bigrams, i.e., pairs of consecutive letters.⁷ Assuming we have an
alphabet of 28 letters (a–z, space, and a special symbol for all other characters including digits,
punctuations, etc.) we represent a document as a 28 � 28 dimensional vector x 2 R784, where
each entry xŒi� represents a count of a particular letter combination in the document, normalized
by the document’s length. For example, denoting by xab the entry of x corresponding to the

⁷While one may think that words will also be good predictors, letters, or letter-bigrams are far more robust: we are likely to
encounter a new document without any of the words we observed in the training set, while a document without any of the
distinctive letter-bigrams is significantly less likely.
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letter-bigram ab:

xab D
#ab

jDj
; (2.3)

where #ab is the number of times the bigram ab appears in the document, and jDj is the total
number of bigrams in the document (the document’s length).
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Figure 2.2: Character-bigram histograms for documents in English (left, blue) and German (right,
green). Underscores denote spaces.

Figure 2.2 shows such bigram histograms for several German and English texts. For
readability, we only show the top frequent character-bigrams and not the entire feature vectors.
On the left, we see the bigrams of the English texts, and on the right of the German ones. ere
are clear patterns in the data, and, given a new item, such as:

_a _d _s _t d_ de
e_ en er ie in n

_
on re t_ th
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you could probably tell that it is more similar to the German group than to the English one.
Note, however, that you couldn’t use a single definite rule such as “if it has th its English” or “if
it has ie its German”: while German texts have considerably less th than English, the th may
and does occur in German texts, and similarly the ie combination does occur in English. e
decision requires weighting different factors relative to each other. Let’s formalize the problem in
a machine-learning setup.

We can again use a linear model:

Oy D sign.f .x// D sign.x �wC b/

D sign.xaa � waa C xab � wab C xac � wac : : :C b/:
(2.4)

A document will be considered English if f .x/ � 0 and as German otherwise. Intuitively,
learning should assign large positive values to w entries associated with letter pairs that are much
more common in English than in German (i.e., th) negative values to letter pairs that are much
more common in German than in English (ie, en), and values around zero to letter pairs that are
either common or rare in both languages.

Note that unlike the 2D case of the housing data (price vs. size), here we cannot easily
visualize the points and the decision boundary, and the geometric intuition is likely much less
clear. In general, it is difficult for most humans to think of the geometries of spaces with more
than three dimensions, and it is advisable to think of linear models in terms of assigning weights
to features, which is easier to imagine and reason about.

2.3.2 LOG-LINEAR BINARY CLASSIFICATION
e output f .x/ is in the range Œ�1;1�, and we map it to one of two classes f�1;C1g using
the sign function. is is a good fit if all we care about is the assigned class. However, we may
be interested also in the confidence of the decision, or the probability that the classifier assigns to
the class. An alternative that facilitates this is to map instead to the range Œ0; 1�, by pushing the
output through a squashing function such as the sigmoid �.x/ D 1

1Ce�x , resulting in:

Oy D �.f .x// D
1

1C e�.x�wCb/
: (2.5)

Figure 2.3 shows a plot of the sigmoid function. It is monotonically increasing, and maps values
to the range Œ0; 1�, with 0 being mapped to 1

2
. When used with a suitable loss function (discussed

in Section 2.7.1) the binary predictions made through the log-linear model can be interpreted as
class membership probability estimates �.f .x// D P. Oy D 1 j x/ of x belonging to the positive
class. We also get P. Oy D 0 j x/ D 1 � P. Oy D 1 j x/ D 1 � �.f .x//. e closer the value is to
0 or 1 the more certain the model is in its class membership prediction, with the value of 0.5
indicating model uncertainty.
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Figure 2.3: e sigmoid function �.x/.

2.3.3 MULTI-CLASS CLASSIFICATION
e previous examples were of binary classification, where we had two possible classes. Binary-
classification cases exist, but most classification problems are of a multi-class nature, in which we
should assign an example to one of k different classes. For example, we are given a document and
asked to classify it into one of six possible languages: English, French, German, Italian, Spanish,
Other. A possible solution is to consider six weight vectors wE; wF; : : : and biases, one for each
language, and predict the language resulting in the highest score:⁸

Oy D f .x/ D argmax
L2fE;F;G;I;S;Og

x �wL
C bL: (2.6)

e six sets of parameters wL 2 R784; bL can be arranged as a matrix W 2 R784�6 and
vector b 2 R6, and the equation re-written as:

Oy D f .x/ D x �W C b

prediction D Oy D argmax
i

Oy Œi�:
(2.7)

Here Oy 2 R6 is a vector of the scores assigned by the model to each language, and we again
determine the predicted language by taking the argmax over the entries of Oy .

⁸ere are many ways to model multi-class classification, including binary-to-multi-class reductions. ese are beyond the
scope of this book, but a good overview can be found in Allwein et al. [2000].
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2.4 REPRESENTATIONS

Consider the vector Oy resulting from applying Equation 2.7 of a trained model to a document.
e vector can be considered as a representation of the document, capturing the properties of the
document that are important to us, namely the scores of the different languages. e represen-
tation Oy contains strictly more information than the prediction Oy D argmaxi Oy Œi�: for example,
Oy can be used to distinguish documents in which the main language in German, but which also
contain a sizeable amount of French words. By clustering documents based on their vector rep-
resentations as assigned by the model, we could perhaps discover documents written in regional
dialects, or by multilingual authors.

e vectors x containing the normalized letter-bigram counts for the documents are also
representations of the documents, arguably containing a similar kind of information to the vec-
tors Oy . However, the representations in Oy is more compact (6 entries instead of 784) and more
specialized for the language prediction objective (clustering by the vectors x would likely reveal
document similarities that are not due to a particular mix of languages, but perhaps due to the
document’s topic or writing styles).

e trained matrix W 2 R784�6 can also be considered as containing learned representa-
tions. As demonstrated in Figure 2.4, we can consider two views of W , as rows or as columns.
Each of the 6 columns of W correspond to a particular language, and can be taken to be a 784-
dimensional vector representation of this language in terms of its characteristic letter-bigram pat-
terns. We can then cluster the 6 language vectors according to their similarity. Similarly, each of
the 784 rows of W correspond to a particular letter-bigram, and provide a 6-dimensional vector
representation of that bigram in terms of the languages it prompts.

Representations are central to deep learning. In fact, one could argue that themain power of
deep-learning is the ability to learn good representations. In the linear case, the representations are
interpretable, in the sense that we can assign a meaningful interpretation to each dimension in the
representation vector (e.g., each dimension corresponds to a particular language or letter-bigram).
is is in general not the case—deep learning models often learn a cascade of representations of
the input that build on top of each other, in order to best model the problem at hand, and these
representations are often not interpretable—we do not know which properties of the input they
capture. However, they are still very useful for making predictions. Moreover, at the boundaries of
the model, i.e., at the input and the output, we get representations that correspond to particular
aspects of the input (i.e., a vector representation for each letter-bigram) or the output (i.e., a
vector representation of each of the output classes). We will get back to this in Section 8.3 after
discussing neural networks and encoding categorical features as dense vectors. It is recommended
that you return to this discussion once more after reading that section.
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Figure 2.4: Two views of the W matrix. (a) Each column corresponds to a language. (b) Each row
corresponds to a letter bigram.

2.5 ONE-HOT AND DENSE VECTOR REPRESENTATIONS
e input vector x in our language classification example contains the normalized bigram counts
in the document D. is vector can be decomposed into an average of jDj vectors, each corre-
sponding to a particular document position i :

x D
1

jDj

jDjX
iD1

xDŒi� I (2.8)

here, DŒi� is the bigram at document position i , and each vector xDŒi� 2 R784 is a one-hot vector,
in which all entries are zero except the single entry corresponding to the letter bigram DŒi�, which
is 1.

e resulting vector x is commonly referred to as an averaged bag of bigrams (more gen-
erally averaged bag of words, or just bag of words). Bag-of-words (BOW) representations contain
information about the identities of all the “words” (here, bigrams) of the document, without con-
sidering their order. A one-hot representation can be considered as a bag-of-a-single-word.

e view of the rows of the matrix W as representations of the letter bigrams suggests an
alternative way of computing the document representation vector Oy in Equation (2.7). Denoting
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by W DŒi� the row of W corresponding to the bigram DŒi�, we can take the representation y of a
document D to be the average of the representations of the letter-bigrams in the document:

Oy D
1

jDj

jDjX
iD1

W DŒi� : (2.9)

is representation is often called a continuous bag of words (CBOW), as it is composed of a
sum of word representations, where each “word” representation is a low-dimensional, continuous
vector.

We note that Equation (2.9) and the term x �W in Equation (2.7) are equivalent. To see
why, consider:

y D x �W

D

0@ 1

jDj

jDjX
iD1

xDŒi�

1A �W
D

1

jDj

jDjX
iD1

.xDŒi� �W /

D
1

jDj

jDjX
iD1

W DŒi� :

(2.10)

In other words, the continuous-bag-of-words (CBOW) representation can be obtained
either by summing word-representation vectors or by multiplying a bag-of-words vector by a
matrix in which each row corresponds to a dense word representation (such matrices are also
called embedding matrices). We will return to this point in Chapter 8 (in particular Section 8.3)
when discussing feature representations in deep learning models for text.

2.6 LOG-LINEAR MULTI-CLASS CLASSIFICATION
In the binary case, we transformed the linear prediction into a probability estimate by passing it
through the sigmoid function, resulting in a log-linear model. e analog for the multi-class case
is passing the score vector through the softmax function:

softmax.x/Œi� D
exŒi�P
j exŒj �

: (2.11)

Resulting in:
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Oy D softmax.xW C b/

Oy Œi� D
e.xW Cb/Œi�P
j e.xW Cb/Œj �

:
(2.12)

e softmax transformation forces the values in Oy to be positive and sum to 1, making them
interpretable as a probability distribution.

2.7 TRAINING AS OPTIMIZATION
Recall that the input to a supervised learning algorithm is a training set of n training examples
x1Wn D x1; x2; : : : ; xn together with corresponding labels y1Wn D y1; y2; : : : ; yn. Without loss of
generality, we assume that the desired inputs and outputs are vectors: x1Wn, y1Wn.⁹

e goal of the algorithm is to return a function f ./ that accurately maps input examples
to their desired labels, i.e., a function f ./ such that the predictions Oy D f .x/ over the training
set are accurate. To make this more precise, we introduce the notion of a loss function, quantifying
the loss suffered when predicting Oy while the true label is y . Formally, a loss function L. Oy; y/

assigns a numerical score (a scalar) to a predicted output Oy given the true expected output y . e
loss function should be bounded from below, with the minimum attained only for cases where
the prediction is correct.

e parameters of the learned function (the matrix W and the biases vector b) are then set
in order to minimize the loss L over the training examples (usually, it is the sum of the losses over
the different training examples that is being minimized).

Concretely, given a labeled training set .x1Wn; y1Wn/, a per-instance loss function L and a
parameterized function f .xI‚/ we define the corpus-wide loss with respect to the parameters ‚

as the average loss over all training examples:

L.‚/ D
1

n

nX
iD1

L.f .xi I‚/; y i /: (2.13)

In this view, the training examples are fixed, and the values of the parameters determine
the loss. e goal of the training algorithm is then to set the values of the parameters ‚ such that
the value of L is minimized:

O‚ D argmin
‚

L.‚/ D argmin
‚

1

n

nX
iD1

L.f .xi I‚/; y i /: (2.14)

Equation (2.14) attempts to minimize the loss at all costs, which may result in overfitting
the training data. To counter that, we often pose soft restrictions on the form of the solution. is
⁹In many cases it is natural to think of the expected output as a scalar (class assignment) rather than a vector. In such cases, y

is simply the corresponding one-hot vector, and argmaxi yŒi� is the corresponding class assignment.
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is done using a function R.‚/ taking as input the parameters and returning a scalar that reflect
their “complexity,” which we want to keep low. By adding R to the objective, the optimization
problem needs to balance between low loss and low complexity:

O‚ D argmin
‚

0BBBB@
loss‚ …„ ƒ

1

n

nX
iD1

L.f .xi I‚/; y i / C

regularization‚…„ƒ
�R.‚/

1CCCCA : (2.15)

e function R is called a regularization term. Different combinations of loss functions and
regularization criteria result in different learning algorithms, with different inductive biases.

We now turn to discuss common loss functions (Section 2.7.1), followed by a discussion of
regularization and regularizers (Section 2.7.2). en, in Section 2.8 we present an algorithm for
solving the minimization problem (Equation (2.15)).

2.7.1 LOSS FUNCTIONS
e loss can be an arbitrary function mapping two vectors to a scalar. For practical purposes of
optimization, we restrict ourselves to functions for which we can easily compute gradients (or sub-
gradients).¹⁰ In most cases, it is sufficient and advisable to rely on a common loss function rather
than defining your own. For a detailed discussion and theoretical treatment of loss functions for
binary classification, see Zhang [2004]. We now discuss some loss functions that are commonly
used with linear models and with neural networks in NLP.

Hinge (binary) For binary classification problems, the classifier’s output is a single scalar Qy and
the intended output y is in fC1;�1g. e classification rule is Oy D sign. Qy/, and a classification
is considered correct if y � Qy > 0, meaning that y and Qy share the same sign. e hinge loss, also
known as margin loss or SVM loss, is defined as:

Lhinge(binary). Qy; y/ D max.0; 1 � y � Qy/: (2.16)

e loss is 0 when y and Qy share the same sign and j Qyj � 1. Otherwise, the loss is linear.
In other words, the binary hinge loss attempts to achieve a correct classification, with a margin
of at least 1.

Hinge (multi-class) e hinge loss was extended to the multi-class setting by Crammer and
Singer [2002]. Let Oy D Oy Œ1�; : : : ; Oy Œn� be the classifier’s output vector, and y be the one-hot vector
for the correct output class.

e classification rule is defined as selecting the class with the highest score:

prediction D argmax
i

Oy Œi�: (2.17)

¹⁰A gradient of a function with k variables is a collection of k partial derivatives, one according to each of the variables. Gradients
are discussed further in Section 2.8.



2.7. TRAINING AS OPTIMIZATION 27

Denote by t D argmaxi y Œi� the correct class, and by k D argmaxi¤t Oy Œi� the highest scoring
class such that k ¤ t . e multi-class hinge loss is defined as:

Lhinge(multi-class). Oy; y/ D max.0; 1 � . Oy Œt� � Oy Œk�//: (2.18)

e multi-class hinge loss attempts to score the correct class above all other classes with a margin
of at least 1.

Both the binary and multi-class hinge losses are intended to be used with linear outputs.
e hinge losses are useful whenever we require a hard decision rule, and do not attempt to model
class membership probability.

Log loss e log loss is a common variation of the hinge loss, which can be seen as a “soft”
version of the hinge loss with an infinite margin [LeCun et al., 2006]:

Llog. Oy; y/ D log.1C exp.�. Oy Œt� � Oy Œk�//: (2.19)

Binary cross entropy e binary cross-entropy loss, also referred to as logistic loss is used in binary
classification with conditional probability outputs. We assume a set of two target classes labeled
0 and 1, with a correct label y 2 f0; 1g. e classifier’s output Qy is transformed using the sigmoid
(also called the logistic) function �.x/ D 1=.1C e�x/ to the range Œ0; 1�, and is interpreted as the
conditional probability Oy D �. Qy/ D P.y D 1jx/. e prediction rule is:

prediction D
(

0 Oy < 0:5

1 Oy � 0:5:

e network is trained to maximize the log conditional probability log P.y D 1jx/ for each
training example .x; y/. e logistic loss is defined as:

Llogistic. Oy; y/ D �y log Oy � .1 � y/ log.1 � Oy/: (2.20)

e logistic loss is useful when we want the network to produce class conditional probability
for a binary classification problem. When using the logistic loss, it is assumed that the output layer
is transformed using the sigmoid function.

Categorical cross-entropy loss e categorical cross-entropy loss (also referred to as negative log
likelihood) is used when a probabilistic interpretation of the scores is desired.

Let y D y Œ1�; : : : ; y Œn� be a vector representing the true multinomial distribution over the
labels 1; : : : ; n,¹¹ and let Oy D Oy Œ1�; : : : ; Oy Œn� be the linear classifier’s output, which was transformed
by the softmax function (Section 2.6), and represent the class membership conditional distribu-
tion Oy Œi� D P.y D i jx/. e categorical cross entropy loss measures the dissimilarity between the
true label distribution y and the predicted label distribution Oy , and is defined as cross entropy:

Lcross-entropy. Oy; y/ D �
X

i

y Œi� log. Oy Œi�/: (2.21)

¹¹is formulation assumes an instance can belong to several classes with some degree of certainty.



28 2. LEARNING BASICS AND LINEAR MODELS

For hard-classification problems in which each training example has a single correct class
assignment, y is a one-hot vector representing the true class. In such cases, the cross entropy can
be simplified to:

Lcross-entropy(hard classification). Oy; y/ D � log. Oy Œt�/; (2.22)

where t is the correct class assignment. is attempts to set the probability mass assigned to the
correct class t to 1. Because the scores Oy have been transformed using the softmax function to be
non-negative and sum to one, increasing the mass assigned to the correct class means decreasing
the mass assigned to all the other classes.

e cross-entropy loss is very common in the log-linear models and the neural networks
literature, and produces a multi-class classifier which does not only predict the one-best class label
but also predicts a distribution over the possible labels. When using the cross-entropy loss, it is
assumed that the classifier’s output is transformed using the softmax transformation.

Ranking losses In some settings, we are not given supervision in term of labels, but rather as
pairs of correct and incorrect items x and x0, and our goal is to score correct items above incorrect
ones. Such training situations arise when we have only positive examples, and generate negative
examples by corrupting a positive example. A useful loss in such scenarios is the margin-based
ranking loss, defined for a pair of correct and incorrect examples:

Lranking(margin).x; x0/ D max.0; 1 � .f .x/ � f .x0///; (2.23)

where f .x/ is the score assigned by the classifier for input vector x. e objective is to score (rank)
correct inputs over incorrect ones with a margin of at least 1.

A common variation is to use the log version of the ranking loss:

Lranking(log).x; x0/ D log.1C exp.�.f .x/ � f .x0////: (2.24)

Examples using the ranking hinge loss in language tasks include training with the auxiliary
tasks used for deriving pre-trained word embeddings (see Section 10.4.2), in which we are given a
correct word sequence and a corrupted word sequence, and our goal is to score the correct sequence
above the corrupt one [Collobert and Weston, 2008]. Similarly, Van de Cruys [2014] used the
ranking loss in a selectional-preferences task, in which the network was trained to rank correct
verb-object pairs above incorrect, automatically derived ones, and Weston et al. [2013] trained
a model to score correct (head, relation, tail) triplets above corrupted ones in an information-
extraction setting. An example of using the ranking log loss can be found in Gao et al. [2014]. A
variation of the ranking log loss allowing for a different margin for the negative and positive class
is given in dos Santos et al. [2015].



2.7. TRAINING AS OPTIMIZATION 29

2.7.2 REGULARIZATION
Consider the optimization problem in Equation (2.14). It may admit multiple solutions, and,
especially in higher dimensions, it can also over-fit. Consider our language identification example,
and a setting in which one of the documents in the training set (call it xo) is an outlier: it is actually
in German, but is labeled as French. In order to drive the loss down, the learner can identify
features (letter bigrams) in xo that occur in only few other documents, and give them very strong
weights toward the (incorrect) French class. en, for other German documents in which these
features occur, which may now be mistakenly classified as French, the learner will find other
German letter bigrams and will raise their weights in order for the documents to be classified as
German again. is is a bad solution to the learning problem, as it learns something incorrect, and
can cause test German documents which share many words with xo to be mistakenly classified
as French. Intuitively, we would like to control for such cases by driving the learner away from
such misguided solutions and toward more natural ones, in which it is OK to mis-classify a few
examples if they don’t fit well with the rest.

is is achieved by adding a regularization term R to the optimization objective, whose job
is to control the complexity of the parameter value, and avoid cases of overfitting:

O‚ D argmin
‚

L.‚/C �R.‚/

D argmin
‚

1

n

nX
iD1

L.f .xi I‚/; y i /C �R.‚/:

(2.25)

e regularization term considers the parameter values, and scores their complexity. We
then look for parameter values that have both a low loss and low complexity. A hyperparameter¹²
� is used to control the amount of regularization: do we favor simple model over low loss ones,
or vice versa. e value of � has to be set manually, based on the classification performance on a
development set. While Equation (2.25) has a single regularization function and � value for all
the parameters, it is of course possible to have a different regularizer for each item in ‚.

In practice, the regularizers R equate complexity with large weights, and work to keep
the parameter values low. In particular, the regularizers R measure the norms of the parameter
matrices, and drive the learner toward solutions with low norms. Common choices for R are the
L2 norm, the L1 norm, and the elastic-net.

L2 regularization In L2 regularization, R takes the form of the squared L2 norm of the param-
eters, trying to keep the sum of the squares of the parameter values low:

RL2
.W / D jjW jj22 D

X
i;j

.W Œi;j �/
2: (2.26)

¹²A hyperparameter is a parameter of the model which is not learned as part of the optimization process, but needs to be set by
hand.
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e L2 regularizer is also called a gaussian prior or weight decay.
Note that L2 regularizedmodels are severely punished for high parameter weights, but once

the value is close enough to zero, their effect becomes negligible. e model will prefer to decrease
the value of one parameter with high weight by 1 than to decrease the value of ten parameters
that already have relatively low weights by 0.1 each.

L1 regularization In L1 regularization, R takes the form of the L1 norm of the parameters,
trying to keep the sum of the absolute values of the parameters low:

RL1
.W / D jjW jj1 D

X
i;j

jW Œi;j �j: (2.27)

In contrast to L2, the L1 regularizer is punished uniformly for low and high values, and
has an incentive to decrease all the non-zero parameter values toward zero. It thus encourages
a sparse solutions—models with many parameters with a zero value. e L1 regularizer is also
called a sparse prior or lasso [Tibshirani, 1994].

Elastic-Net e elastic-net regularization [Zou and Hastie, 2005] combines both L1 and L2

regularization:

Relastic-net.W / D �1RL1
.W /C �2RL2

.W /: (2.28)

Dropout Another form of regularization which is very effective in neural networks is Dropout,
which we discuss in Section 4.6.

2.8 GRADIENT-BASED OPTIMIZATION
In order to train the model, we need to solve the optimization problem in Equation (2.25). A
common solution is to use a gradient-based method. Roughly speaking, gradient-based methods
work by repeatedly computing an estimate of the loss L over the training set, computing the
gradients of the parameters ‚ with respect to the loss estimate, and moving the parameters in the
opposite directions of the gradient. e different optimization methods differ in how the error
estimate is computed, and how “moving in the opposite direction of the gradient” is defined. We
describe the basic algorithm, stochastic gradient descent (SGD), and then briefly mention the other
approaches with pointers for further reading.

..

Motivating Gradient-based Optimization Consider the task of finding the scalar value
x that minimizes a function y D f .x/. e canonical approach is computing the second
derivative f 00.x/ of the function, and solving for f 00.x/ D 0 to get the extrema points. For the
sake of example, assume this approach cannot be used (indeed, it is challenging to use this ap-
proach in function of multiple variables). An alternative approach is a numeric one: compute
the first derivative f 0.x/. en, start with an initial guess value xi . Evaluating u D f 0.xi /
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..

will give the direction of change. If u D 0, then xi is an optimum point. Otherwise, move
in the opposite direction of u by setting xiC1  xi � �u, where � is a rate parameter. With
a small enough value of �, f .xiC1/ will be smaller than f .xi /. Repeating this process (with
properly decreasing values of �) will find an optimum point xi . If the function f ./ is convex,
the optimum will be a global one. Otherwise, the process is only guaranteed to find a local
optimum.

Gradient-based optimization simply generalizes this idea for functions with multiple
variables. A gradient of a function with k variables is the collections of k partial derivatives,
one according to each of the variables. Moving the inputs in the direction of the gradient will
increase the value of the function, while moving them in the opposite direction will decrease
it. When optimizing the loss L.‚Ix1Wn; y1Wn/, the parameters ‚ are considered as inputs to
the function, while the training examples are treated as constants.

..

Convexity In gradient-based optimization, it is common to distinguish between convex (or
concave) functions and non-convex (non-concave) functions. A convex function is a function
whose second-derivative is always non-negative. As a consequence, convex functions have
a single minimum point. Similarly, concave functions are functions whose second-derivatives
are always negative or zero, and as a consequence have a single maximum point. Convex (con-
cave) functions have the property that they are easy to minimize (maximize) using gradient-
based optimization—simply follow the gradient until an extremumpoint is reached, and once
it is reached we know we obtained the global extremum point. In contrast, for functions that
are neither convex nor concave, a gradient-based optimization procedure may converge to a
local extremum point, missing the global optimum.

2.8.1 STOCHASTIC GRADIENT DESCENT
An effective method for training linear models is using the SGD algorithm [Bottou, 2012, LeCun
et al., 1998a] or a variant of it. SGD is a general optimization algorithm. It receives a function
f parameterized by ‚, a loss function L, and desired input and output pairs x1Wn; y1Wn. It then
attempts to set the parameters ‚ such that the cumulative loss of f on the training examples is
small. e algorithm works, as shown in Algorithm 2.1.

e goal of the algorithm is to set the parameters ‚ so as to minimize the total loss
L.‚/ D

Pn
iD1 L.f .xi I �/; yi / over the training set. It works by repeatedly sampling a training

example and computing the gradient of the error on the example with respect to the parameters
‚ (line 4)—the input and expected output are assumed to be fixed, and the loss is treated as a
function of the parameters ‚. e parameters ‚ are then updated in the opposite direction of the
gradient, scaled by a learning rate �t (line 5). e learning rate can either be fixed throughout the
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Algorithm 2.1 Online stochastic gradient descent training.

Input:
- Function f .xI‚/ parameterized with parameters ‚.
- Training set of inputs x1; : : : ; xn and desired outputs y1; : : : ; yn.
- Loss function L.

1: while stopping criteria not met do
2: Sample a training example xi ; yi

3: Compute the loss L.f .xi I‚/; yi /

4: Og  gradients of L.f .xi I‚/; yi / w.r.t ‚

5: ‚ ‚ � �t Og

6: return ‚

training process, or decay as a function of the time step t .¹³ For further discussion on setting the
learning rate, see Section 5.2.

Note that the error calculated in line 3 is based on a single training example, and is thus
just a rough estimate of the corpus-wide loss L that we are aiming to minimize. e noise in
the loss computation may result in inaccurate gradients. A common way of reducing this noise is
to estimate the error and the gradients based on a sample of m examples. is gives rise to the
minibatch SGD algorithm (Algorithm 2.2).

In lines 3–6, the algorithm estimates the gradient of the corpus loss based on the minibatch.
After the loop, Og contains the gradient estimate, and the parameters ‚ are updated toward Og.
e minibatch size can vary in size from m D 1 to m D n. Higher values provide better estimates
of the corpus-wide gradients, while smaller values allow more updates and in turn faster con-
vergence. Besides the improved accuracy of the gradients estimation, the minibatch algorithm
provides opportunities for improved training efficiency. For modest sizes of m, some comput-
ing architectures (i.e., GPUs) allow an efficient parallel implementation of the computation in
lines 3–6. With a properly decreasing learning rate, SGD is guaranteed to converge to a global
optimum if the function is convex, which is the case for linear and log-linear models coupled
with the loss functions and regularizers discussed in this chapter. However, it can also be used
to optimize non-convex functions such as multi-layer neural network. While there are no longer
guarantees of finding a global optimum, the algorithm proved to be robust and performs well in
practice.¹⁴

¹³Learning rate decay is required in order to prove convergence of SGD.
¹⁴Recent work from the neural networks literature argue that the non-convexity of the networks is manifested in a proliferation
of saddle points rather than local minima [Dauphin et al., 2014]. is may explain some of the success in training neural
networks despite using local search techniques.
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Algorithm 2.2 Minibatch stochastic gradient descent training.

Input:
- Function f .xI‚/ parameterized with parameters ‚.
- Training set of inputs x1; : : : ; xn and desired outputs y1; : : : ; yn.
- Loss function L.

1: while stopping criteria not met do
2: Sample a minibatch of m examples f.x1; y1/; : : : ; .xm; ym/g

3: Og  0

4: for i D 1 to m do
5: Compute the loss L.f .xi I‚/; yi /

6: Og  Og C gradients of 1
m

L.f .xi I‚/; yi / w.r.t ‚

7: ‚ ‚ � �t Og

8: return ‚

2.8.2 WORKED-OUT EXAMPLE
As an example, consider a multi-class linear classifier with hinge loss:

Oy D argmax
i

Oy Œi�

Oy D f .x/ D xW C b

L. Oy; y/ D max.0; 1 � . Oy Œt� � Oy Œk�//

D max.0; 1 � ..xW C b/Œt� � .xW C b/Œk�//

t D argmax
i

y Œi�

k D argmax
i

Oy Œi� i ¤ t:

We want to set the parameters W and b such that the loss is minimized. We need to compute
the gradients of the loss with respect to the values W and b. e gradient is the collection of the
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partial derivatives according to each of the variables:

@L. Oy; y/

@W
D

0BBBBBBBBBB@

@L. Oy ;y/

@W Œ1;1�

@L. Oy ;y/
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@L. Oy ;y/

@W Œ1;n�

@L. Oy ;y/

@W Œ2;1�

@L. Oy ;y/
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:::
:::
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:::
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1CCCCCCCCCCA
@L. Oy; y/

@b
D

�
@L. Oy ;y/

@bŒ1�

@L. Oy ;y/

@bŒ2�

� � �
@L. Oy ;y/

@bŒn�

�
:

More concretely, we will compute the derivate of the loss w.r.t each of the values W Œi;j � and bŒj �.
We begin by expanding the terms in the loss calculation:¹⁵

L. Oy; y/ D max.0; 1 � . Oy Œt� � Oy Œk�//

D max.0; 1 � ..xW C b/Œt� � .xW C b/Œk�//

D max
 

0; 1 �

  X
i

xŒi� �W Œi;t� C bŒt�

!
�

 X
i

xŒi� �W Œi;k� C bŒk�

!!!

D max
 

0; 1 �
X

i

xŒi� �W Œi;t� � bŒt� C
X

i

xŒi� �W Œi;k� C bŒk�

!
t D argmax

i

y Œi�

k D argmax
i

Oy Œi� i ¤ t:

e first observation is that if 1 � . Oy Œt� � Oy Œk�/ � 0 then the loss is 0 and so is the gradient (the
derivative of the max operation is the derivative of the maximal value). Otherwise, consider the
derivative of @L

@bŒi�

. For the partial derivative, bŒi� is treated as a variable, and all others are consid-
ered as constants. For i ¤ k; t , the term bŒi� does not contribute to the loss, and its derivative it
is 0. For i D k and i D t we trivially get:

@L

@bŒi�

D

8̂<̂
:
�1 i D t

1 i D k

0 otherwise:

¹⁵More advanced derivation techniques allow working with matrices and vectors directly. Here, we stick to high-school level
techniques.
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Similarly, for W Œi;j �, only j D k and j D t contribute to the loss. We get:

@L

@W Œi;j �

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

@.�xŒi��W Œi;t�/

@W Œi;t�

D �xŒi� j D t

@.xŒi��W Œi;k�/

@W Œi;k�

D xŒi� j D k

0 otherwise:

is concludes the gradient calculation.
As a simple exercise, the reader should try and compute the gradients of a multi-class linear

model with hinge loss and L2 regularization, and the gradients of multi-class classification with
softmax output transformation and cross-entropy loss.

2.8.3 BEYOND SGD
While the SGD algorithm can and often does produce good results, more advanced algorithms
are also available. e SGD+Momentum [Polyak, 1964] andNesterovMomentum [Nesterov, 1983,
2004, Sutskever et al., 2013] algorithms are variants of SGD in which previous gradients are ac-
cumulated and affect the current update. Adaptive learning rate algorithms including AdaGrad
[Duchi et al., 2011], AdaDelta [Zeiler, 2012], RMSProp [Tieleman and Hinton, 2012], and
Adam [Kingma and Ba, 2014] are designed to select the learning rate for each minibatch, some-
times on a per-coordinate basis, potentially alleviating the need of fiddling with learning rate
scheduling. For details of these algorithms, see the original papers or [Bengio et al., 2016, Sec-
tions 8.3, 8.4].
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