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C H A P T E R 3

From Linear Models to
Multi-layer Perceptrons

3.1 LIMITATIONS OF LINEAR MODELS: THE XOR
PROBLEM

e hypothesis class of linear (and log-linear) models is severely restricted. For example, it cannot
represent the XOR function, defined as:

xor.0; 0/ D 0

xor.1; 0/ D 1

xor.0; 1/ D 1

xor.1; 1/ D 0:

at is, there is no parameterization w 2 R2; b 2 R such that:

.0; 0/ �wC b < 0

.0; 1/ �wC b � 0

.1; 0/ �wC b � 0

.1; 1/ �wC b < 0:

To see why, consider the following plot of the XOR function, where blue Os denote the
positive class and green Xs the negative class.
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It is clear that no straight line can separate the two classes.

3.2 NONLINEAR INPUT TRANSFORMATIONS
However, if we transform the points by feeding each of them through the nonlinear function
�.x1; x2/ D Œx1 � x2; x1 C x2�, the XOR problem becomes linearly separable.
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e function � mapped the data into a representation that is suitable for linear classification.
Having � at our disposal, we can now easily train a linear classifier to solve the XOR problem.

Oy D f .x/ D �.x/W C b:

In general, one can successfully train a linear classifier over a dataset which is not linearly
separable by defining a function that will map the data to a representation in which it is linearly
separable, and then train a linear classifier on the resulting representation. In the XOR example
the transformed data has the same dimensions as the original one, but often in order to make the
data linearly separable one needs to map it to a space with a much higher dimension.

is solution has one glaring problem, however: we need to manually define the function
�, a process which is dependent on the particular dataset, and requires a lot of human intuition.

3.3 KERNEL METHODS
Kernelized Support Vectors Machines (SVMs) [Boser and et al., 1992], and Kernel Methods in
general [Shawe-Taylor and Cristianini, 2004], approach this problem by defining a set of generic
mappings, each of them mapping the data into very high dimensional—and sometimes even
infinite—spaces, and then performing linear classification in the transformed space. Working
in very high dimensional spaces significantly increase the probability of finding a suitable linear
separator.

One example mapping is the polynomial mapping, �.x/ D .x/d . For d D 2, we get
�.x1; x2/ D .x1x1; x1x2; x2x1; x2x2/. is gives us all combinations of the two variables, allow-
ing to solve the XOR problem using a linear classifier, with a polynomial increase in the number
of parameters. In the XOR problem the mapping increased the dimensionality of the input (and
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hence the number of parameters) from 2–4. For the language identification example, the input
dimensionality would have increased from 784 to 7842 D614,656 dimensions.

Working in very high dimensional spaces can become computationally prohibitive, and
the ingenuity in kernel methods is the use of the kernel trick [Aizerman et al., 1964, Schölkopf,
2001] that allows one to work in the transformed space without ever computing the transformed
representation. e generic mappings are designed to work on many common cases, and the user
needs to select the suitable one for its task, often by trial and error. A downside of the approach
is that the application of the kernel trick makes the classification procedure for SVMs dependent
linearly on the size of the training set, making it prohibitive for use in setups with reasonably
large training sets. Another downside of high dimensional spaces is that they increase the risk of
overfitting.

3.4 TRAINABLE MAPPING FUNCTIONS
A different approach is to define a trainable nonlinear mapping function, and train it in con-
junction with the linear classifier. at is, finding the suitable representation becomes the re-
sponsibility of the training algorithm. For example, the mapping function can take the form of a
parameterized linear model, followed by a nonlinear activation function g that is applied to each
of the output dimensions:

Oy D �.x/W C b

�.x/ D g.xW 0
C b0/:

(3.1)

By taking g.x/ D max.0; x/ and W 0
D
�

1 1
1 1

�
, b0
D . �1 0 / we get an equivalent mapping

to .x1 � x2; x1 C x2/ for the our points of interest (0,0), (0,1), (1,0), and (1,1), successfully solv-
ing the XOR problem. e entire expression g.xW 0

C b0/W C b is differentiable (although not
convex), making it possible to apply gradient-based techniques to the model training, learning
both the representation function and the linear classifier on top of it at the same time. is is
the main idea behind deep learning and neural networks. In fact, Equation (3.1) describes a very
common neural network architecture called a multi-layer perceptron (MLP). Having established
the motivation, we now turn to describe multi-layer neural networks in more detail.
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