
41

C H A P T E R 4

Feed-forward Neural Networks
4.1 A BRAIN-INSPIRED METAPHOR
As the name suggests, neural networks were inspired by the brain’s computation mechanism,
which consists of computation units called neurons. While the connections between artificial
neural networks and the brain are in fact rather slim, we repeat the metaphor here for complete-
ness. In the metaphor, a neuron is a computational unit that has scalar inputs and outputs. Each
input has an associated weight. e neuron multiplies each input by its weight, and then sums¹
them, applies a nonlinear function to the result, and passes it to its output. Figure 4.1 shows such
a neuron.

Output

Neuron

Input

y1

x1 x2 x3 x4

∫

Figure 4.1: A single neuron with four inputs.

e neurons are connected to each other, forming a network: the output of a neuron may
feed into the inputs of one or more neurons. Such networks were shown to be very capable com-
putational devices. If the weights are set correctly, a neural network with enough neurons and a
nonlinear activation function can approximate a very wide range of mathematical functions (we
will be more precise about this later).

A typical feed-forward neural network may be drawn as in Figure 4.2. Each circle is a
neuron, with incoming arrows being the neuron’s inputs and outgoing arrows being the neuron’s
outputs. Each arrow carries a weight, reflecting its importance (not shown). Neurons are arranged
in layers, reflecting the flow of information. e bottom layer has no incoming arrows, and is
¹While summing is the most common operation, other functions, such as a max, are also possible.



42 4. FEED-FORWARD NEURAL NETWORKS

the input to the network. e top-most layer has no outgoing arrows, and is the output of the
network. e other layers are considered “hidden.” e sigmoid shape inside the neurons in the
middle layers represent a nonlinear function (i.e., the logistic function 1=.1C e�x/) that is applied
to the neuron’s value before passing it to the output. In the figure, each neuron is connected to all
of the neurons in the next layer—this is called a fully connected layer or an affine layer.

Output layer

Hidden layer

Hidden layer

Input layer

y2 y3y1

x1 x2 x3 x4

∫ ∫ ∫∫∫

∫ ∫ ∫ ∫∫∫

Figure 4.2: Feed-forward neural network with two hidden layers.

While the brain metaphor is sexy and intriguing, it is also distracting and cumbersome
to manipulate mathematically. We therefore switch back to using more concise mathematical
notation. As will soon become apparent, a feed-forward network as the one in Figure 4.2 is simply
a stack of linear models separated by nonlinear functions.

e values of each row of neurons in the network can be thought of as a vector. In Figure 4.2
the input layer is a 4-dimensional vector (x), and the layer above it is a 6-dimensional vector (h1).
e fully connected layer can be thought of as a linear transformation from 4 dimensions to 6

dimensions. A fully connected layer implements a vector-matrix multiplication, h D xW where
the weight of the connection from the i th neuron in the input row to the j th neuron in the output
row is W Œi;j �.² e values of h are then transformed by a nonlinear function g that is applied to
each value before being passed on as input to the next layer. e whole computation from input
to output can be written as: .g.xW 1//W 2 where W 1 are the weights of the first layer and W 2

are the weights of the second one. Taking this view, the single neuron in Figure 4.1 is equivalent
to a logistic (log-linear) binary classifier �.xw/ without a bias term .
²To see why this is the case, denote the weight of the i th input of the j th neuron in h as W Œi;j �. e value of hŒj � is then
hŒj � D

P4
iD1 xŒi� � W Œi;j �.



4.2. IN MATHEMATICAL NOTATION 43

4.2 IN MATHEMATICAL NOTATION
From this point on, we will abandon the brain metaphor and describe networks exclusively in
terms of vector-matrix operations.
e simplest neural network is called a perceptron. It is simply a linear model:

NNPerceptron.x/ D xW C b (4.1)

x 2 Rdin ; W 2 Rdin�dout ; b 2 Rdout ;

where W is the weight matrix and b is a bias term.³ In order to go beyond linear functions, we
introduce a nonlinear hidden layer (the network in Figure 4.2 has two such layers), resulting in
the Multi Layer Perceptron with one hidden-layer (MLP1). A feed-forward neural network with
one hidden-layer has the form:

NNMLP1.x/ D g.xW 1 C b1/W 2 C b2 (4.2)
x 2 Rdin ; W 1 2 Rdin�d1 ; b1 2 Rd1 ; W 2 2 Rd1�d2 ; b2 2 Rd2 :

Here W 1 and b1 are a matrix and a bias term for the first linear transformation of the input,
g is a nonlinear function that is applied element-wise (also called a nonlinearity or an activation
function), and W 2 and b2 are the matrix and bias term for a second linear transform.

Breaking it down, xW 1 C b1 is a linear transformation of the input x from din dimensions
to d1 dimensions. g is then applied to each of the d1 dimensions, and the matrix W 2 together
with bias vector b2 are then used to transform the result into the d2 dimensional output vector.
e nonlinear activation function g has a crucial role in the network’s ability to represent complex
functions. Without the nonlinearity in g, the neural network can only represent linear transfor-
mations of the input.⁴ Taking the view in Chapter 3, the first layer transforms the data into a
good representation, while the second layer applies a linear classifier to that representation.

We can add additional linear-transformations and nonlinearities, resulting in an MLP with
two hidden-layers (the network in Figure 4.2 is of this form):

NNMLP2.x/ D .g2.g1.xW 1 C b1/W 2 C b2//W 3: (4.3)

It is perhaps clearer to write deeper networks like this using intermediary variables:

NNMLP2.x/ Dy

h1 Dg1.xW 1 C b1/

h2 Dg2.h1W 2 C b2/

y Dh2W 3:

(4.4)

³e network in Figure 4.2 does not include bias terms. A bias term can be added to a layer by adding to it an additional neuron
that does not have any incoming connections, whose value is always 1.
⁴To see why, consider that a sequence of linear transformations is still a linear transformation.



44 4. FEED-FORWARD NEURAL NETWORKS

e vector resulting from each linear transform is referred to as a layer. e outer-most
linear transform results in the output layer and the other linear transforms result in hidden layers.
Each hidden layer is followed by a nonlinear activation. In some cases, such as in the last layer of
our example, the bias vectors are forced to 0 (“dropped”).

Layers resulting from linear transformations are often referred to as fully connected, or affine.
Other types of architectures exist. In particular, image recognition problems benefit from convo-
lutional and pooling layers. Such layers have uses also in language processing, and will be discussed
in Chapter 13. Networks with several hidden layers are said to be deep networks, hence the name
deep learning.

When describing a neural network, one should specify the dimensions of the layers and the
input. A layer will expect a din dimensional vector as its input, and transform it into a dout dimen-
sional vector. e dimensionality of the layer is taken to be the dimensionality of its output. For
a fully connected layer l.x/ D xW C b with input dimensionality din and output dimensionality
dout, the dimensions of x is 1 � din, of W is din � dout and of b is 1 � dout.

Like the case with linear models, the output of a neural network is a dout dimensional vector.
In case dout D 1, the network’s output is a scalar. Such networks can be used for regression (or
scoring) by considering the value of the output, or for binary classification by consulting the sign
of the output. Networks with dout D k > 1 can be used for k-class classification, by associating
each dimension with a class, and looking for the dimension with maximal value. Similarly, if the
output vector entries are positive and sum to one, the output can be interpreted as a distribution
over class assignments (such output normalization is typically achieved by applying a softmax
transformation on the output layer, see Section 2.6).

e matrices and the bias terms that define the linear transformations are the parameters of
the network. Like in linear models, it is common to refer to the collection of all parameters as ‚.
Together with the input, the parameters determine the network’s output. e training algorithm
is responsible for setting their values such that the network’s predictions are correct. Unlike linear
models, the loss function of multi-layer neural networks with respect to their parameters is not
convex,⁵ making search for the optimal parameter values intractable. Still, the gradient-based
optimization methods discussed in Section 2.8 can be applied, and perform very well in practice.
Training neural networks is discussed in detail in Chapter 5.

4.3 REPRESENTATION POWER
In terms of representation power, it was shown by Hornik et al. [1989] and Cybenko [1989] that
MLP1 is a universal approximator—it can approximate with any desired non-zero amount of er-
ror a family of functions that includes all continuous functions on a closed and bounded subset
of Rn, and any function mapping from any finite dimensional discrete space to another.⁶ is
⁵Strictly convex functions have a single optimal solution, making them easy to optimize using gradient-based methods.
⁶Specifically, a feed-forward network with linear output layer and at least one hidden layer with a “squashing” activation function
can approximate any Borel measurable function from one finite dimensional space to another. e proof was later extended
by Leshno et al. [1993] to a wider range of activation functions, including the ReLU function g.x/ D max.0; x/.



4.4. COMMON NONLINEARITIES 45

may suggest there is no reason to go beyond MLP1 to more complex architectures. However, the
theoretical result does not discuss the learnability of the neural network (it states that a represen-
tation exists, but does not say how easy or hard it is to set the parameters based on training data
and a specific learning algorithm). It also does not guarantee that a training algorithm will find
the correct function generating our training data. Finally, it does not state how large the hidden
layer should be. Indeed, Telgarsky [2016] show that there exist neural networks with many layers
of bounded size that cannot be approximated by networks with fewer layers unless these layers
are exponentially large.

In practice, we train neural networks on relatively small amounts of data using local search
methods such as variants of stochastic gradient descent, and use hidden layers of relatively mod-
est sizes (up to several thousands). As the universal approximation theorem does not give any
guarantees under these non-ideal, real-world conditions, there is definitely benefit to be had in
trying out more complex architectures than MLP1. In many cases, however, MLP1 does indeed
provide strong results. For further discussion on the representation power of feed-forward neural
networks, see Bengio et al. [2016, Section 6.5].

4.4 COMMON NONLINEARITIES
e nonlinearity g can take many forms. ere is currently no good theory as to which nonlin-
earity to apply in which conditions, and choosing the correct nonlinearity for a given task is for
the most part an empirical question. I will now go over the common nonlinearities from the liter-
ature: the sigmoid, tanh, hard tanh and the rectified linear unit (ReLU). Some NLP researchers
also experimented with other forms of nonlinearities such as cube and tanh-cube.

Sigmoid e sigmoid activation function �.x/ D 1=.1C e�x/, also called the logistic function,
is an S-shaped function, transforming each value x into the range Œ0; 1�. e sigmoid was the
canonical nonlinearity for neural networks since their inception, but is currently considered to be
deprecated for use in internal layers of neural networks, as the choices listed below prove to work
much better empirically.

Hyperbolic tangent (tanh) e hyperbolic tangent tanh.x/ D e2x�1
e2xC1

activation function is an
S-shaped function, transforming the values x into the range Œ�1; 1�.

Hard tanh e hard-tanh activation function is an approximation of the tanh function which
is faster to compute and to find derivatives thereof:

hardtanh.x/ D

8̂<̂
:
�1 x < �1

1 x > 1

x otherwise:
(4.5)

Rectifier (ReLU) e rectifier activation function [Glorot et al., 2011], also known as the recti-
fied linear unit is a very simple activation function that is easy to work with and was shown many



46 4. FEED-FORWARD NEURAL NETWORKS

times to produce excellent results.⁷ e ReLU unit clips each value x < 0 at 0. Despite its sim-
plicity, it performs well for many tasks, especially when combined with the dropout regularization
technique (see Section 4.6):

ReLU.x/ D max.0; x/ D

(
0 x < 0

x otherwise:
(4.6)

As a rule of thumb, both ReLU and tanh units work well, and significantly outperform the
sigmoid. You may want to experiment with both tanh and ReLU activations, as each one may
perform better in different settings.

Figure 4.3 shows the shapes of the different activations functions, together with the shapes
of their derivatives.

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

�f

�x

�f

�x

�f

�x

�f

�x

Figure 4.3: Activation functions (top) and their derivatives (bottom).

4.5 LOSS FUNCTIONS
When training a neural network (more on training in Chapter 5), much like when training a
linear classifier, one defines a loss function L. Oy; y/, stating the loss of predicting Oy when the
true output is y . e training objective is then to minimize the loss across the different training
examples. e loss L. Oy; y/ assigns a numerical score (a scalar) to the network’s output Oy given
the true expected output y . e loss functions discussed for linear models in Section 2.7.1 are
relevant and widely used also for neural networks. For further discussion on loss functions in the
⁷e technical advantages of the ReLU over the sigmoid and tanh activation functions is that it does not involve expensive-
to-compute functions, and more importantly that it does not saturate. e sigmoid and tanh activation are capped at 1, and
the gradients at this region of the functions are near zero, driving the entire gradient near zero. e ReLU activation does
not have this problem, making it especially suitable for networks with multiple layers, which are susceptible to the vanishing
gradients problem when trained with the saturating units.



4.6. REGULARIZATION AND DROPOUT 47

context of neural networks, see LeCun and Huang [2005], LeCun et al. [2006] and Bengio et al.
[2016].

4.6 REGULARIZATION AND DROPOUT
Multi-layer networks can be large and have many parameters, making them especially prone to
overfitting. Model regularization is just as important in deep neural networks as it is in linear
models, and perhaps even more so. e regularizers discussed in Section 2.7.2, namely L2, L1

and the elastic-net, are also relevant for neural networks. In particular, L2 regularization, also
called weight decay is effective for achieving good generalization performance in many cases, and
tuning the regularization strength � is advisable.

Another effective technique for preventing neural networks from overfitting the training
data is dropout training [Hinton et al., 2012, Srivastava et al., 2014]. e dropout method is
designed to prevent the network from learning to rely on specific weights. It works by randomly
dropping (setting to 0) half of the neurons in the network (or in a specific layer) in each training
example in the stochastic-gradient training. For example, consider the multi-layer perceptron
with two hidden layers (MLP2):

NNMLP2.x/ Dy

h1 Dg1.xW 1 C b1/

h2 Dg2.h1W 2 C b2/

y Dh2W 3:

When applying dropout training to MLP2, we randomly set some of the values of h1 and
h2 to 0 at each training round:

NNMLP2.x/ Dy

h1 Dg1.xW 1 C b1/

m1 �Bernouli.r1/

Qh1 Dm1 ˇ h1

h2 Dg2. Qh1W 2 C b2/

m2 �Bernouli.r2/

Qh2 Dm2 ˇ h2

y D Qh2W 3:

(4.7)

Here, m1 and m2 are random masking vectors with the dimensions of h1 and h2, respectively,
and ˇ is the element-wise multiplication operation. e values of the elements in the masking



48 4. FEED-FORWARD NEURAL NETWORKS

vectors are either 0 or 1, and are drawn from a Bernouli distribution with parameter r (usually
r D 0:5). e values corresponding to zeros in the masking vectors are then zeroed out, replacing
the hidden layers h with Qh before passing them on to the next layer.

Work by Wager et al. [2013] establishes a strong connection between the dropout method
and L2 regularization. Another view links dropout to model averaging and ensemble techniques
[Srivastava et al., 2014].

e dropout technique is one of the key factors contributing to very strong results of neural-
network methods on image classification tasks [Krizhevsky et al., 2012], especially when com-
bined with ReLU activation units [Dahl et al., 2013]. e dropout technique is effective also in
NLP applications of neural networks.

4.7 SIMILARITY AND DISTANCE LAYERS
We sometimes wish to calculate a scalar value based on two vectors, such that the value reflects
the similarity, compatibility or distance between the two vectors. For example, vectors v1 2 Rd

and v2 2 Rd may be the output layers of two MLPs, and we would like to train the network to
produce similar vectors for some training examples, and dissimilar vectors for others.

In what follows we describe common functions that take two vectors u 2 Rd and v 2 Rd ,
and return a scalar. ese functions can (and often are) integrated in feed-forward neural net-
works.

Dot Product A very common options is to use the dot-product:

simdot.u; v/ Du � v D

dX
iD1

uŒi�vŒi� (4.8)

Euclidean Distance Another popular options is the Euclidean Distance:

disteuclidean.u; v/ D

vuut dX
iD1

.uŒi� � vŒi�/2 D
p

.u � v/ � .u � v/ D jju � vjj2 (4.9)

Note that this is a distance metric and not a similarity: here, small (near zero) values indicate
similar vectors and large values dissimilar ones. e square-root is often omitted.

Trainable Forms e dot-product and the euclidean distance above are fixed functions. We
sometimes want to use a parameterized function, that can be trained to produce desired similarity
(or dissimilarity) values by focusing on specific dimensions of the vectors. A common trainable
similarity function is the bilinear form:



4.8. EMBEDDING LAYERS 49

simbilinear.u; v/ D uMv (4.10)

M 2 Rd�d

where the matrix M is a parameter that needs to be trained.
Similarly, for a trainable distance function we can use:

dist.u; v/ D .u � v/M .u � v/ (4.11)

Finally, a multi-layer perceptron with a single output neuron can also be used for producing
a scalar from two vectors, by feeding it the concatenation of the two vectors.

4.8 EMBEDDING LAYERS
As will be further discussed in Chapter 8, when the input to the neural network contains sym-
bolic categorical features (e.g., features that take one of k distinct symbols, such as words from
a closed vocabulary), it is common to associate each possible feature value (i.e., each word in
the vocabulary) with a d-dimensional vector for some d . ese vectors are then considered pa-
rameters of the model, and are trained jointly with the other parameters. e mapping from a
symbolic feature values such as “word number 1249” to d-dimensional vectors is performed by
an embedding layer (also called a lookup layer). e parameters in an embedding layer are simply
a matrix E 2 Rjvocabj�d where each row corresponds to a different word in the vocabulary. e
lookup operation is then simply indexing: v1249 D E Œ1249;W�. If the symbolic feature is encoded as
a one-hot vector x, the lookup operation can be implemented as the multiplication xE .

e word vectors are often concatenated to each other before being passed on to the next
layer. Embeddings are discussed in more depth in Chapter 8 when discussing dense representa-
tions of categorical features, and in Chapter 10 when discussing pre-trained word representations.


	Supervised Classification and Feed-forward Neural Networks
	Feed-forward Neural Networks
	A Brain-inspired Metaphor
	In Mathematical Notation
	Representation Power
	Common Nonlinearities
	Loss Functions
	Regularization and Dropout
	Similarity and Distance Layers
	Embedding Layers



