
51

C H A P T E R 5

Neural Network Training
Similar to linear models, neural network are differentiable parameterized functions, and are
trained using gradient-based optimization (see Section 2.8). e objective function for nonlinear
neural networks is not convex, and gradient-based methods may get stuck in a local minima. Still,
gradient-based methods produce good results in practice.

Gradient calculation is central to the approach. e mathematics of gradient computation
for neural networks are the same as those of linear models, simply following the chain-rule of
differentiation. However, for complex networks this process can be laborious and error-prone.
Fortunately, gradients can be efficiently and automatically computed using the backpropagation
algorithm [LeCun et al., 1998b, Rumelhart et al., 1986]. e backpropagation algorithm is a
fancy name for methodically computing the derivatives of a complex expression using the chain-
rule, while caching intermediary results. More generally, the backpropagation algorithm is a spe-
cial case of the reverse-mode automatic differentiation algorithm [Neidinger, 2010, Section 7],
[Baydin et al., 2015, Bengio, 2012]. e following section describes reverse mode automatic dif-
ferentiation in the context of the computation graph abstraction. e rest of the chapter is devoted
to practical tips for training neural networks in practice.

5.1 THE COMPUTATION GRAPH ABSTRACTION

While one can compute the gradients of the various parameters of a network by hand and im-
plement them in code, this procedure is cumbersome and error prone. For most purposes, it is
preferable to use automatic tools for gradient computation [Bengio, 2012]. e computation-
graph abstraction allows us to easily construct arbitrary networks, evaluate their predictions for
given inputs (forward pass), and compute gradients for their parameters with respect to arbitrary
scalar losses (backward pass).

A computation graph is a representation of an arbitrary mathematical computation as
a graph. It is a directed acyclic graph (DAG) in which nodes correspond to mathematical
operations or (bound) variables and edges correspond to the flow of intermediary values between
the nodes. e graph structure defines the order of the computation in terms of the dependencies
between the different components. e graph is a DAG and not a tree, as the result of one
operation can be the input of several continuations. Consider for example a graph for the
computation of .a � b C 1/ � .a � b C 2/:

52 5. NEURAL NETWORK TRAINING

1 a b 2

*

*

+ +

e computation of a � b is shared. We restrict ourselves to the case where the computation graph
is connected (in a disconnected graph, each connected component is an independent function that
can be evaluated and differentiated independently of the other connected components).

1 × 17

1 × 17

1 × 17

1 × 17

20 × 17

150 × 20 1 × 20

1 × 1720 × 17

150 × 20 1 × 20

1 × 1720 × 17

150 × 20 1 × 20

1 × 20

1 × 20

1 × 20

1 × 150
x

1 × 17

1 × 17

1 × 17

1 × 20

1 × 20

1 × 20

1 × 150

1 × 17

1 × 1

1 × 1

1 × 1

1 × 17

1 × 17

1 × 20

1 × 20

1 × 20

1 × 150

1 × 50 1 × 50 1 × 50 1 × 50 1 × 50 1 × 50

|V| × 50

“the” “black” “dog”
|V| × 50

“the” “black” “dog”

5

(a) (b) (c)

softmax

ADD

ADD

MUL

W
2

b
2

W
1

b
1

W
2

b
2

W
1

E E

b
1

W
2

b
2

W
1

b
1

MUL

tanh

concat concat

softmax

ADD

ADD

MUL

MUL

tanh

softmax

pick

log

neg

ADD

ADD

MUL

MUL

tanh

lookup lookup lookup lookup lookup lookup

Figure 5.1: (a) Graph with unbound input. (b) Graph with concrete input. (c) Graph with concrete
input, expected output, and a final loss node.

Since a neural network is essentially a mathematical expression, it can be represented as a
computation graph. For example, Figure 5.1a presents the computation graph for an MLP with
one hidden-layer and a softmax output transformation. In our notation, oval nodes represent

5.1. THE COMPUTATION GRAPH ABSTRACTION 53

mathematical operations or functions, and shaded rectangle nodes represent parameters (bound
variables). Network inputs are treated as constants, and drawn without a surrounding node. Input
and parameter nodes have no incoming arcs, and output nodes have no outgoing arcs. e output
of each node is a matrix, the dimensionality of which is indicated above the node.

is graph is incomplete: without specifying the inputs, we cannot compute an output.
Figure 5.1b shows a complete graph for an MLP that takes three words as inputs, and predicts the
distribution over part-of-speech tags for the third word. is graph can be used for prediction, but
not for training, as the output is a vector (not a scalar) and the graph does not take into account
the correct answer or the loss term. Finally, the graph in Figure 5.1c shows the computation
graph for a specific training example, in which the inputs are the (embeddings of) the words
“the,” “black,” “dog,” and the expected output is “NOUN” (whose index is 5). e pick node
implements an indexing operation, receiving a vector and an index (in this case, 5) and returning
the corresponding entry in the vector.

Once the graph is built, it is straightforward to run either a forward computation (com-
pute the result of the computation) or a backward computation (computing the gradients), as we
show below. Constructing the graphs may look daunting, but is actually very easy using dedicated
software libraries and APIs.

5.1.1 FORWARD COMPUTATION
e forward pass computes the outputs of the nodes in the graph. Since each node’s output de-
pends only on itself and on its incoming edges, it is trivial to compute the outputs of all nodes
by traversing the nodes in a topological order and computing the output of each node given the
already computed outputs of its predecessors.

More formally, in a graph of N nodes, we associate each node with an index i according
to their topological ordering. Let fi be the function computed by node i (e.g., multiplication.
addition, etc.). Let �.i/ be the parent nodes of node i , and ��1.i/ D fj j i 2 �.j /g the children
nodes of node i (these are the arguments of fi). Denote by v.i/ the output of node i , that is, the
application of fi to the output values of its arguments ��1.i/. For variable and input nodes, fi

is a constant function and ��1.i/ is empty. e computation-graph forward pass computes the
values v.i/ for all i 2 Œ1; N �.

Algorithm 5.3 Computation graph forward pass.

1: for i = 1 to N do
2: Let a1; : : : ; am D ��1.i/

3: v.i/ fi .v.a1/; : : : ; v.am//

54 5. NEURAL NETWORK TRAINING

5.1.2 BACKWARD COMPUTATION (DERIVATIVES, BACKPROP)
e backward pass begins by designating a node N with scalar (1 � 1) output as a loss-node,
and running forward computation up to that node. e backward computation computes the

gradients of the parameters with respect to that node’s value. Denote by d.i/ the quantity @N

@i
.

e backpropagation algorithm is used to compute the values d.i/ for all nodes i .
e backward pass fills a table of values d.1/; : : : ; d.N / as in Algorithm 5.4.

Algorithm 5.4 Computation graph backward pass (backpropagation).

1: d.N / 1 F
@N

@N
D 1

2: for i = N-1 to 1 do
3: d.i/

P
j 2�.i/ d.j / �

@fj

@i
F

@N

@i
D

X
j 2�.i/

@N

@j

@j

@i

e backpropagation algorithm (Algorithm 5.4) is essentially following the chain-rule of differ-

entiation. e quantity @fj

@i
is the partial derivative of fj .��1.j // w.r.t the argument i 2 ��1.j /.

is value depends on the function fj and the values v.a1/; : : : ; v.am/ (where a1; : : : ; am D

��1.j /) of its arguments, which were computed in the forward pass.
us, in order to define a new kind of node, one needs to define two methods: one for

calculating the forward value v.i/ based on the node’s inputs, and the another for calculating @fi

@x
for each x 2 ��1.i/.

..

Derivatives of “non-mathematical” functions While defining @fi

@x
for mathematical func-

tions such is as log or C is straightforward, some find it challenging to think about the
derivative of operations as as pick.x; 5/ that selects the fifth element of a vector. e answer
is to think in terms of the contribution to the computation. After picking the i th element of
a vector, only that element participates in the remainder of the computation. us, the gradi-
ent of pick.x; 5/ is a vector g with the dimensionality of x where gŒ5� D 1 and gŒi¤5� D 0.
Similarly, for the function max.0; x/ the value of the gradient is 1 for x > 0 and 0 otherwise.

For further information on automatic differentiation, see Neidinger [2010, Section 7] and
Baydin et al. [2015]. For more in depth discussion of the backpropagation algorithm and compu-
tation graphs (also called flow graphs), see Bengio et al. [2016, Section 6.5] and Bengio [2012],
LeCun et al. [1998b]. For a popular yet technical presentation, see Chris Olah’s description at
http://colah.github.io/posts/2015-08-Backprop/.

http://colah.github.io/posts/2015-08-Backprop/

5.1. THE COMPUTATION GRAPH ABSTRACTION 55

5.1.3 SOFTWARE
Several software packages implement the computation-graph model, including eano,¹
[Bergstra et al., 2010], TensorFlow² [Abadi et al., 2015], Chainer,³ and DyNet⁴ [Neubig et al.,
2017]. All these packages support all the essential components (node types) for defining a wide
range of neural network architectures, covering the structures described in this book and more.
Graph creation is made almost transparent by use of operator overloading. e framework de-
fines a type for representing graph nodes (commonly called expressions), methods for constructing
nodes for inputs and parameters, and a set of functions and mathematical operations that take
expressions as input and result in more complex expressions. For example, the python code for
creating the computation graph from Figure 5.1c using the DyNet framework is:

import dynet as dy
model i n i t i a l i z a t i o n .
model = dy .Model ()
mW1 = model . add_parameters ((20 ,150))
mb1 = model . add_parameters (20)
mW2 = model . add_parameters ((17 ,20))
mb2 = model . add_parameters (17)
lookup = model . add_lookup_parameters ((100 , 50))
t ra iner = dy . SimpleSGDTrainer (model)

def get_index (x) :
pass # Logic omitted .

Maps words to numeric IDs .

The fo l lowing bui lds and executes the computation graph ,
and updates model parameters .
Only one data point i s shown , in pract i ce the fo l lowing
should run in a data - feeding loop .

Building the computation graph :
dy . renew_cg () # create a new graph .
Wrap the model parameters as graph - nodes .
W1 = dy . parameter (mW1)
b1 = dy . parameter (mb1)
W2 = dy . parameter (mW2)
b2 = dy . parameter (mb2)
Generate the embeddings layer .
vthe = dy . lookup [get_index (”the”)]
vblack = dy . lookup [get_index (”black”)]
vdog = dy . lookup [get_index (”dog”)]

Connect the l e a f nodes into a complete graph .
x = dy . concatenate ([vthe , vblack , vdog])
output = dy . softmax (W2*(dy . tanh (W1*x+b1))+b2)
l o s s = -dy . log (dy . pick (output , 5))

¹http://deeplearning.net/software/theano/
²https://www.tensorflow.org/
³http://chainer.org
⁴https://github.com/clab/dynet

http://deeplearning.net/software/theano/
https://www.tensorflow.org/
http://chainer.org
https://github.com/clab/dynet

56 5. NEURAL NETWORK TRAINING

loss_value = lo s s . forward ()
l o s s . backward () # the gradient i s computed

and stored in the corresponding
parameters .

t ra ine r . update () # update the parameters according to the gradients .

Most of the code involves various initializations: the first block defines model parameters that are
be shared between different computation graphs (recall that each graph corresponds to a specific
training example).e second block turns themodel parameters into the graph-node (Expression)
types. e third block retrieves the Expressions for the embeddings of the input words. Finally,
the fourth block is where the graph is created. Note how transparent the graph creation is—
there is an almost a one-to-one correspondence between creating the graph and describing it
mathematically. e last block shows a forward and backward pass. e equivalent code in the
TensorFlow package is:⁵

import tensorf low as t f

W1 = t f . get_variable (”W1” , [20 , 150])
b1 = t f . get_variable (”b1” , [2 0])
W2 = t f . get_variable (”W2” , [17 , 20])
b2 = t f . get_variable (”b2” , [1 7])
lookup = t f . get_variable (”W” , [100 , 50])

def get_index (x) :
pass # Logic omitted

p1 = t f . placeholder (t f . int32 , [])
p2 = t f . placeholder (t f . int32 , [])
p3 = t f . placeholder (t f . int32 , [])
target = t f . placeholder (t f . int32 , [])

v_w1 = t f . nn . embedding_lookup(lookup , p1)
v_w2 = t f . nn . embedding_lookup(lookup , p2)
v_w3 = t f . nn . embedding_lookup(lookup , p3)

x = t f . concat ([v_w1, v_w2, v_w3] , 0)
output = t f . nn . softmax (

t f . einsum(” i j , j -> i ” , W2, t f . tanh (
t f . einsum(” i j , j -> i ” , W1, x) + b1)) + b2)

l o s s = - t f . log (output [target])
t ra ine r = t f . t ra in . GradientDescentOptimizer (0 .1) . minimize (l o s s)

Graph de f i n i t i on done , compile i t and feed concrete data .
Only one data - point i s shown , in pract i ce we w i l l use
a data - feeding loop .
with t f . Sess ion () as se s s :

s e s s . run (t f . g l oba l_var iab l e s_ in i t i a l i z e r ())
feed_dict = {

p1 : get_index (”the”) ,
p2 : get_index (”black”) ,
p3 : get_index (”dog”) ,

⁵TensorFlow code provided by Tim Rocktäschel. anks Tim!

5.1. THE COMPUTATION GRAPH ABSTRACTION 57

target : 5
}
loss_value = ses s . run (loss , feed_dict)
update , no c a l l of backward necessary
se s s . run (tra iner , feed_dict)

e main difference between DyNet (and Chainer) to TensorFlow (and eano) is that the
formers use dynamic graph construction while the latters use static graph construction. In dynamic
graph construction, a different computation graph is created from scratch for each training sam-
ple, using code in the host language. Forward and backward propagation are then applied to this
graph. In contrast, in the static graph construction approach, the shape of the computation graph
is defined once in the beginning of the computation, using an API for specifying graph shapes,
with place-holder variables indicating input and output values. en, an optimizing graph com-
piler produces an optimized computation graph, and each training example is fed into the (same)
optimized graph. e graph compilation step in the static toolkits (TensorFlow and eano) is
both a blessing and a curse. On the one hand, once compiled, large graphs can be run efficiently
on either the CPU or a GPU, making it ideal for large graphs with a fixed structure, where only
the inputs change between instances. However, the compilation step itself can be costly, and it
makes the interface more cumbersome to work with. In contrast, the dynamic packages focus
on building large and dynamic computation graphs and executing them “on the fly” without a
compilation step. While the execution speed may suffer compared to the static toolkits, in prac-
tice the computation speeds of the dynamic toolkits are very competitive. e dynamic packages
are especially convenient when working with the recurrent and recursive networks described in
Chapters 14 and 18 as well as in structured prediction settings as described in Chapter 19, in
which the graphs of different data-points have different shapes. See Neubig et al. [2017] for
further discussion on the dynamic-vs.-static approaches, and speed benchmarks for the different
toolkits. Finally, packages such as Keras⁶ provide a higher level interface on top of packages such
as eano and TensorFlow, allowing the definition and training of complex neural networks with
even fewer lines of code, provided that the architectures are well established, and hence supported
in the higher-level interface.

5.1.4 IMPLEMENTATION RECIPE
Using the computation graph abstraction and dynamic graph construction, the pseudo-code for
a network training algorithm is given in Algorithm 5.5.

Here, build_computation_graph is a user-defined function that builds the computation
graph for the given input, output, and network structure, returning a single loss node. up-
date_parameters is an optimizer specific update rule. e recipe specifies that a new graph is cre-
ated for each training example. is accommodates cases in which the network structure varies
between training examples, such as recurrent and recursive neural networks, to be discussed in

⁶https://keras.io

https://keras.io

58 5. NEURAL NETWORK TRAINING

Algorithm 5.5 Neural network training with computation graph abstraction (using minibatches
of size 1).

1: Define network parameters.
2: for iteration = 1 to T do
3: for Training example xi ; yi in dataset do
4: loss_node build_computation_graph(xi , yi , parameters)
5: loss_node.forward()
6: gradients loss_node().backward()
7: parameters update_parameters(parameters, gradients)
8: return parameters.

Chapters 14–18. For networks with fixed structures, such as an MLPs, it may be more efficient
to create one base computation graph and vary only the inputs and expected outputs between
examples.

5.1.5 NETWORK COMPOSITION
As long as the network’s output is a vector (1 � k matrix), it is trivial to compose networks by
making the output of one network the input of another, creating arbitrary networks. e compu-
tation graph abstractions makes this ability explicit: a node in the computation graph can itself
be a computation graph with a designated output node. One can then design arbitrarily deep and
complex networks, and be able to easily evaluate and train them thanks to automatic forward and
gradient computation. is makes it easy to define and train elaborate recurrent and recursive
networks, as discussed in Chapters 14–16 and 18, as well as networks for structured outputs and
multi-objective training, as we discuss in Chapters 19 and 20.

5.2 PRACTICALITIES
Once the gradient computation is taken care of, the network is trained using SGD or another
gradient-based optimization algorithm. e function being optimized is not convex, and for a
long time training of neural networks was considered a “black art” which can only be done by
selected few. Indeed, many parameters affect the optimization process, and care has to be taken
to tune these parameters.While this book is not intended as a comprehensive guide to successfully
training neural networks, we do list here a few of the prominent issues. For further discussion on
optimization techniques and algorithms for neural networks, refer to Bengio et al. [2016, Chapter
8]. For some theoretical discussion and analysis, refer to Glorot and Bengio [2010]. For various
practical tips and recommendations, see Bottou [2012], LeCun et al. [1998a].

5.2. PRACTICALITIES 59

5.2.1 CHOICE OF OPTIMIZATION ALGORITHM
While the SGD algorithm works well, it may be slow to converge. Section 2.8.3 lists some alter-
native, more advanced stochastic-gradient algorithms. As most neural network software frame-
works provide implementations of these algorithms, it is easy and often worthwhile to try out
different variants. In my research group, we found that when training larger networks, using the
Adam algorithm [Kingma and Ba, 2014] is very effective and relatively robust to the choice of
the learning rate.

5.2.2 INITIALIZATION
e non-convexity of the objective function means the optimization procedure may get stuck in
a local minimum or a saddle point, and that starting from different initial points (e.g., different
random values for the parameters) may result in different results. us, it is advised to run several
restarts of the training starting at different random initializations, and choosing the best one
based on a development set.⁷ e amount of variance in the results due to different random seed
selections is different for different network formulations and datasets, and cannot be predicted in
advance.

e magnitude of the random values has a very important effect on the success of training.
An effective scheme due to Glorot and Bengio [2010], called xavier initialization after Glorot’s
first name, suggests initializing a weight matrix W 2 Rdin�dout as:

W � U

"
�

p
6

p
din C dout

;C

p
6

p
din C dout

#
; (5.1)

where U Œa; b� is a uniformly sampled random value in the range Œa; b�. e suggestion is based
on properties of the tanh activation function, works well in many situations, and is the preferred
default initialization method by many.

Analysis by He et al. [2015] suggests that when using ReLU nonlinearities, the weights
should be initialized by sampling from a zero-mean Gaussian distribution whose standard devi-
ation is

q
2

din
. is initialization was found by He et al. [2015] to work better than xavier initial-

ization in an image classification task, especially when deep networks were involved.

5.2.3 RESTARTS AND ENSEMBLES
When training complex networks, different random initializations are likely to end up with dif-
ferent final solutions, exhibiting different accuracies. us, if your computational resources allow,
it is advisable to run the training process several times, each with a different random initializa-
tion, and choose the best one on the development set. is technique is called random restarts.
e average model accuracy across random seeds is also interesting, as it gives a hint as to the
stability of the process.
⁷When debugging, and for reproducibility of results, it is advised to used a fixed random seed.

60 5. NEURAL NETWORK TRAINING

While the need to “tune” the random seed used to initialize models can be annoying, it also
provides a simple way to get different models for performing the same task, facilitating the use
model ensembles. Once several models are available, one can base the prediction on the ensemble
of models rather than on a single one (for example by taking the majority vote across the different
models, or by averaging their output vectors and considering the result as the output vector of the
ensembled model). Using ensembles often increases the prediction accuracy, at the cost of having
to run the prediction step several times (once for each model).

5.2.4 VANISHING AND EXPLODING GRADIENTS
In deep networks, it is common for the error gradients to either vanish (become exceedingly close
to 0) or explode (become exceedingly high) as they propagate back through the computation
graph. e problem becomes more severe in deeper networks, and especially so in recursive and
recurrent networks [Pascanu et al., 2012]. Dealing with the vanishing gradients problem is still
an open research question. Solutions include making the networks shallower, step-wise training
(first train the first layers based on some auxiliary output signal, then fix them and train the upper
layers of the complete network based on the real task signal), performing batch-normalization
[Ioffe and Szegedy, 2015] (for every minibatch, normalizing the inputs to each of the network
layers to have zero mean and unit variance) or using specialized architectures that are designed to
assist in gradient flow (e.g., the LSTM and GRU architectures for recurrent networks, discussed
in Chapter 15). Dealing with the exploding gradients has a simple but very effective solution: clip-
ping the gradients if their norm exceeds a given threshold. Let Og be the gradients of all parameters
in the network, and k Ogk be their L2 norm. Pascanu et al. [2012] suggest to set: Og threshold

k Ogk
Og if

k Ogk > threshold.

5.2.5 SATURATION AND DEAD NEURONS
Layers with tanh and sigmoid activations can become saturated—resulting in output values for
that layer that are all close to one, the upper-limit of the activation function. Saturated neurons
have very small gradients, and should be avoided. Layers with the ReLU activation cannot be
saturated, but can “die”—most or all values are negative and thus clipped at zero for all inputs,
resulting in a gradient of zero for that layer. If your network does not train well, it is advisable to
monitor the network for layers withmany saturated or dead neurons. Saturated neurons are caused
by too large values entering the layer. is may be controlled for by changing the initialization,
scaling the range of the input values, or changing the learning rate. Dead neurons are caused by
all signals entering the layer being negative (for example this can happen after a large gradient
update). Reducing the learning rate will help in this situation. For saturated layers, another option
is to normalize the values in the saturated layer after the activation, i.e., instead of g.h/ D tanh.h/

using g.h/ D tanh.h/

k tanh.h/k
. Layer normalization is an effective measure for countering saturation, but

is also expensive in terms of gradient computation. A related technique is batch normalization, due

5.2. PRACTICALITIES 61

to Ioffe and Szegedy [2015], in which the activations at each layer are normalized so that they
have mean 0 and variance 1 across each mini-batch. e batch-normalization techniques became
a key component for effective training of deep networks in computer vision. As of this writing, it
is less popular in natural language applications.

5.2.6 SHUFFLING
e order in which the training examples are presented to the network is important. e SGD
formulation above specifies selecting a random example in each turn. In practice, most implemen-
tations go over the training example in random order, essentially performing random sampling
without replacement. It is advised to shuffle the training examples before each pass through the
data.

5.2.7 LEARNING RATE
Selection of the learning rate is important. Too large learning rates will prevent the network from
converging on an effective solution. Too small learning rates will take a very long time to converge.
As a rule of thumb, one should experiment with a range of initial learning rates in range Œ0; 1�,
e.g., 0:001, 0:01, 0:1, 1. Monitor the network’s loss over time, and decrease the learning rate once
the loss stops improving on a held-out development set. Learning rate scheduling decreases the
rate as a function of the number of observed minibatches. A common schedule is dividing the
initial learning rate by the iteration number. Léon Bottou [2012] recommends using a learning
rate of the form �t D �0.1C �0�t/�1 where �0 is the initial learning rate, �t is the learning rate to
use on the t th training example, and � is an additional hyperparameter. He further recommends
determining a good value of �0 based on a small sample of the data prior to running on the entire
dataset.

5.2.8 MINIBATCHES
Parameter updates occur either every training example (minibatches of size 1) or every k train-
ing examples. Some problems benefit from training with larger minibatch sizes. In terms of the
computation graph abstraction, one can create a computation graph for each of the k training
examples, and then connecting the k loss nodes under an averaging node, whose output will be
the loss of the minibatch. Large minibatched training can also be beneficial in terms of computa-
tion efficiency on specialized computing architectures such as GPUs, and replacing vector-matrix
operations by matrix-matrix operations. is is beyond the scope of this book.

	Supervised Classification and Feed-forward Neural Networks
	Neural Network Training
	The Computation Graph Abstraction
	Forward Computation
	Backward Computation (Derivatives, Backprop)
	Software
	Implementation Recipe
	Network Composition

	Practicalities
	Choice of Optimization Algorithm
	Initialization
	Restarts and Ensembles
	Vanishing and Exploding Gradients
	Saturation and Dead Neurons
	Shuffling
	Learning Rate
	Minibatches

