
1

C H A P T E R 1

Introduction
Dependency parsing is an approach to automatic syntactic analysis of natural language inspired by
the theoretical linguistic tradition of dependency grammar. After playing a rather marginal role in
natural language processing for many years, dependency parsing has recently attracted considerable
interest from researchers and developers in the field. One reason for the increasing popularity is
the fact that dependency-based syntactic representations seem to be useful in many applications of
language technology, such as machine translation and information extraction, thanks to their trans-
parent encoding of predicate-argument structure. Another reason is the perception that dependency
grammar is better suited than phrase structure grammar for languages with free or flexible word
order, making it possible to analyze typologically diverse languages within a common framework.
But perhaps the most important reason is that this approach has led to the development of accurate
syntactic parsers for a number of languages, particularly in combination with machine learning from
syntactically annotated corpora, or treebanks. It is the parsing methods used by these systems that
constitute the topic of this book.

It is important to note from the outset that this is a book about dependency parsing, not
about dependency grammar, and that we will in fact have very little to say about the way in which
dependency grammar can be used to analyze the syntax of a given natural language. We will simply
assume that such an analysis exists and that we want to build a parser that can implement it to
automatically analyze new sentences. In this introductory chapter, however, we will start by giving a
brief introduction to dependency grammar, focusing on basic notions rather than details of linguistic
analysis. With this background, we will then define the task of dependency parsing and introduce
the most important methods that are used in the field, methods that will be covered in depth in
later chapters. We conclude, as in every chapter, with a summary and some suggestions for further
reading.

1.1 DEPENDENCY GRAMMAR

Dependency grammar is rooted in a long tradition, possibly going back all the way to Pān. ini’s
grammar of Sanskrit several centuries before the Common Era, and has largely developed as a
form for syntactic representation used by traditional grammarians, in particular in Europe, and
especially for Classical and Slavic languages. The starting point of the modern theoretical tradition
of dependency grammar is usually taken to be the work of the French linguist Lucien Tesnière,
published posthumously in the late 1950s. Since then, a number of different dependency grammar
frameworks have been proposed, of which the most well-known are probably the Prague School’s
Functional Generative Description, Mel’čuk’s Meaning-Text Theory, and Hudson’s Word Grammar.

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

1.1. DEPENDENCY GRAMMAR 3

Figure 1.2: Phrase structure for an English sentence.

However, it is important to bear in mind that these differences only concern what is explicitly
encoded in the respective representations. For example, phrases can be distinguished in a dependency
structure by letting each head word represent a phrase consisting of the word itself and all the words
that are dependent on it (possibly in several steps). Conversely, functional relations like subject and
object can be identified in a phrase structure in terms of structural configurations (e.g., “NP under
S” and “NP under VP”). Nevertheless, practical experience has shown that it is a non-trivial task
to perform an automatic conversion from one type of representation to the other (cf. section 6.3).
It is also worth noting that many syntactic theories make use of hybrid representations, combining
elements of dependency structure with elements of phrase structure. Hence, to describe dependency
grammar and phrase structure grammar as two opposite and mutually exclusive approaches to natural
language syntax is at best an over-simplification.

If we assume that dependency structure captures an essential element of natural language
syntax, then we need some criteria for establishing dependency relations, and for distinguishing
the head and the dependent in these relations. Such criteria have been discussed not only in the
dependency grammar tradition, but also within other frameworks where the notion of syntactic head
plays an important role, including many theories based on phrase structure. Here is a list of some
of the more common criteria that have been proposed for identifying a syntactic relation between a
head H and a dependent D in a linguistic construction C:3

1. H determines the syntactic category of C and can often replace C.

2. H determines the semantic category of C;D gives semantic specification.

3. H is obligatory;D may be optional.

3The term construction is used here in a non-technical sense to refer to any structural complex of linguistic expressions.

4 CHAPTER 1. INTRODUCTION

4. H selects D and determines whether D is obligatory or optional.

5. The form of D depends on H (agreement or government).

6. The linear position of D is specified with reference to H .

It is clear that this list contains a mix of different criteria, some syntactic and some semantic, and one
may ask whether there is a single coherent notion of dependency corresponding to all the different
criteria. Some theorists therefore posit the existence of several layers of dependency structure, such
as morphology, syntax and semantics, or surface syntax and deep syntax. Others have pointed out
the need to have different criteria for different kinds of syntactic constructions, in particular for
endocentric and exocentric constructions.

In figure 1.1, the attribute relation (ATT) holding between the noun markets and the adjective
financial is an endocentric construction, where the head can replace the whole without disrupting
the syntactic structure:

Economic news had little effect on [financial] markets.

Endocentric constructions may satisfy all of the criteria listed above, although number 4 is usually
considered less relevant, since dependents in endocentric constructions are taken to be optional and
not selected by their heads.By contrast, the prepositional complement relation (PC) holding between
the preposition on and the noun markets is an exocentric construction, where the head cannot readily
replace the whole:

Economic news had little effect on [markets].

Exocentric constructions, by their definition, fail on criterion number 1, at least with respect to sub-
stitutability of the head for the whole, but may satisfy the remaining criteria. Considering the rest
of the relations exemplified in figure 1.1, the subject and object relations (SBJ, OBJ) are clearly exo-
centric, and the attribute relation from the noun news to the adjective Economic clearly endocentric,
while the remaining attribute relations (effect→ little, effect→ on) have a less clear status.

The distinction between endocentric and exocentric constructions is also related to the dis-
tinction between head-complement and head-modifier (or head-adjunct) relations found in many con-
temporary syntactic theories, since head-complement relations are exocentric while head-modifier
relations are endocentric. The distinction between complements and modifiers is often defined in
terms of valency, which is a central notion in the theoretical tradition of dependency grammar.
Although the exact characterization of this notion differs from one theoretical framework to the
other, valency is usually related to the semantic predicate-argument structure associated with certain
classes of lexemes, in particular verbs but sometimes also nouns and adjectives. The idea is that the
verb imposes requirements on its syntactic dependents that reflect its interpretation as a semantic
predicate. Dependents that correspond to arguments of the predicate can be obligatory or optional
in surface syntax but can only occur once with each predicate. By contrast, dependents that do not
correspond to arguments can have more than one occurrence with a single predicate and tend to be

1.1. DEPENDENCY GRAMMAR 5

Figure 1.3: Two analyses of coordination in dependency grammar.

optional. The valency frame of the verb is normally taken to include argument dependents, but some
theories also allow obligatory non-arguments to be included. Returning to figure 1.1, the subject
and the object would normally be treated as valency-bound dependents of the verb had, while the
adjectival modifiers of the nouns news and markets would be considered valency-free. The preposi-
tional modification of the noun effect may or may not be treated as valency-bound, depending on
whether the entity undergoing the effect is supposed to be an argument of the noun effect or not.
Another term that is sometimes used in connection with valency constraints is arity, which primarily
refers to the number of arguments that a predicate takes (without distinguishing the types of these
arguments).

While most head-complement and head-modifier structures have a straightforward analysis
in dependency grammar, there are also constructions that have a more unclear status. This group
includes constructions that involve grammatical function words, such as articles, complementizers
and auxiliary verbs, but also structures involving prepositional phrases. For these constructions, there
is no general consensus in the tradition of dependency grammar as to whether they should be analyzed
as dependency relations at all and, if so, what should be regarded as the head and what should be
regarded as the dependent. For example, some theories regard auxiliary verbs as heads taking lexical
verbs as dependents; other theories make the opposite assumption; and yet other theories assume
that verb chains are connected by relations that are not dependencies in the usual sense.

Another kind of construction that is problematic for dependency grammar (as for most the-
oretical traditions) is coordination. According to the structuralist tradition, coordination is an en-
docentric construction, since it contains not only one but several heads that can replace the whole
construction syntactically. However, this raises the question of whether coordination can be analyzed
in terms of binary relations holding between a head and a dependent. Consider the following simple
examples:

They operate ships and banks.
She bought and ate an apple.

In the first example, it seems clear that the phrase ships and banks functions as a direct object of the
verb operate, but it is not immediately clear how this phrase can be given an internal analysis that is
compatible with the basic assumptions of dependency grammar, since the two nouns ships and banks
seem to be equally good candidates for being heads. Similarly, in the second example, the noun apple

6 CHAPTER 1. INTRODUCTION

is the object of the coordinated verb group bought and ate, where in some sense both verbs function
as the head of the noun. The most popular treatments of coordination in dependency grammar are
illustrated for the first example in figure 1.3, where the analysis to the left treats the conjunction as
the head, an analysis that may be motivated on semantic grounds, while the analysis on the right
treats the conjunction as the head only of the second conjunct and analyzes the conjunction as a
dependent of the first conjunct. The arguments for the latter analysis are essentially the same as the
arguments for an asymmetric right-branching analysis in phrase structure grammar.

To sum up, the theoretical tradition of dependency grammar is united by the assumption that
syntactic structure essentially consists of dependency relations between words. Moreover, there is
a core of syntactic constructions for which the analysis given by different frameworks agree in all
important respects, notably predicate-argument and head-modifier constructions. However, there
are also constructions for which there is no clear consensus, such as verb groups and coordination.
Finally, it is worth pointing out that the inventory of dependency types used to classify dependency
relations vary from one framework to the other. Besides traditional grammatical functions (such
as predicate, subject, and object), semantic roles (such as agent, patient, and goal) are commonly
used, especially in representations of deep syntax and semantics. Another dimension of variation
is the number of representational levels, or strata, assumed in different theories. Although we will
concentrate in this book on mono-stratal representations, using a single dependency structure for
syntactic analysis, many theoretical frameworks make use of multi-stratal representations, often with
different levels for syntax and semantics.

1.2 DEPENDENCY PARSING

Having introduced the basic notions of dependency grammar, we will now turn to the problem
of dependency parsing, that is, the task of automatically analyzing the dependency structure of a
given input sentence. Throughout this book we will consider a number of different methods for
solving this problem, some based on inductive machine learning from large sets of syntactically
annotated sentences, others based on formal grammars defining permissible dependency structures.
Common to all of these methods is that they do not make any specific assumptions about the kind
of dependency types used, be they grammatical functions or semantic roles, nor about the specific
analysis of different linguistic constructions, such as verb groups or coordination.

All that is assumed is that the task of the parser is to produce a labeled dependency structure
of the kind depicted in figure 1.1, where the words of the sentence (including the artificial word
root) are connected by typed dependency relations. This will be made more precise in chapter 2,
where we define dependency structures as labeled directed graphs – called dependency graphs – and
discuss a number of formal properties of these structures. But for the time being we can define the
parsing problem as that of mapping an input sentence S, consisting of words w0w1 . . . wn (where
w0 = root), to its dependency graph G. In the remainder of this chapter, we will give an overview
of the different approaches to this problem that are covered in the book.

1.2. DEPENDENCY PARSING 7

Broadly speaking, these approaches can be divided into two classes, which we will call data-
driven and grammar-based, respectively. An approach is data-driven if it makes essential use of
machine learning from linguistic data in order to parse new sentences. An approach is grammar-based
if it relies on a formal grammar, defining a formal language, so that it makes sense to ask whether a
given input sentence is in the language defined by the grammar or not. It is important to note that
these categorizations are orthogonal, since it is possible for a parsing method to make essential use
of machine learning and use a formal grammar, hence to be both data-driven and grammar-based.
However, most of the methods that we cover fall into one of these classes only.

The major part of the book, chapters 3–4 to be exact, is devoted to data-driven methods for
dependency parsing, which have attracted the most attention in recent years. We focus on supervised
methods, that is, methods presupposing that the sentences used as input to machine learning have
been annotated with their correct dependency structures. In supervised dependency parsing, there
are two different problems that need to be solved computationally. The first is the learning problem,
which is the task of learning a parsing model from a representative sample of sentences and their
dependency structures. The second is the parsing problem, which is the task of applying the learned
model to the analysis of a new sentence.4 We can represent this as follows:

• Learning: Given a training set D of sentences (annotated with dependency graphs), induce a
parsing model M that can be used to parse new sentences.

• Parsing: Given a parsing modelM and a sentence S, derive the optimal dependency graphG
for S according to M .

Data-driven approaches differ in the type of parsing model adopted, the algorithms used to learn
the model from data, and the algorithms used to parse new sentences with the model. In this book,
we focus on two classes of data-driven methods, which we call transition-based and graph-based,
respectively. These classes contain most of the methods for data-driven dependency parsing that
have been proposed in recent years.

Transition-based methods start by defining a transition system, or state machine, for mapping
a sentence to its dependency graph. The learning problem is to induce a model for predicting the
next state transition, given the transition history, and the parsing problem is to construct the optimal
transition sequence for the input sentence, given the induced model.This is sometimes referred to as
shift-reduce dependency parsing, since the overall approach is inspired by deterministic shift-reduce
parsing for context-free grammars. Transition-based approaches are treated in chapter 3.

Graph-based methods instead define a space of candidate dependency graphs for a sentence.
The learning problem is to induce a model for assigning scores to the candidate dependency graphs
for a sentence, and the parsing problem is to find the highest-scoring dependency graph for the input
sentence, given the induced model. This is often called maximum spanning tree parsing, since the
problem of finding the highest-scoring dependency graph is equivalent, under certain assumptions,

4The parsing problem is sometimes referred to as the inference problem or decoding problem, which are the general terms used in
machine learning for the application of a learned model to new data.

8 CHAPTER 1. INTRODUCTION

to the problem of finding a maximum spanning tree in a dense graph. Graph-based approaches are
treated in chapter 4.

Most data-driven approaches,whether transition-based or graph-based, assume that any input
string is a valid sentence and that the task of the parser is to return the most plausible dependency
structure for the input, no matter how unlikely it may be. Grammar-based approaches, by contrast,
make use of a formal grammar that only accepts a subset of all possible input strings. Given our
previous characterization of the parsing problem, we may say that this formal grammar is an essential
component of the modelM used to parse new sentences. However, the grammar itself may be hand-
crafted or learned from linguistic data, which means that a grammar-based model may or may not
be data-driven as well. In chapter 5, we discuss selected grammar-based methods for dependency
parsing, dividing them into two classes, which we call context-free and constraint-based, respectively.

Context-free dependency parsing exploits a mapping from dependency structures to context-
free phrase structure representations and reuses parsing algorithms originally developed for context-
free grammar.This includes chart parsing algorithms, which are also used in graph-based parsing, as
well as shift-reduce type algorithms,which are closely related to the methods used in transition-based
parsing.

Constraint-based dependency parsing views parsing as a constraint satisfaction problem. A
grammar is defined as a set of constraints on well-formed dependency graphs, and the parsing
problem amounts to finding a dependency graph for a sentence that satisfies all the constraints of
the grammar. Some approaches allow soft, weighted constraints and score dependency graphs by a
combination of the weights of constraints violated by that graph. Parsing then becomes the problem
of finding the dependency graph for a sentence that has the best score, which is essentially the same
formulation as in graph-based parsing.

We can sum up our coverage of dependency parsing methods as follows:

• Data-driven dependency parsing

– Transition-based dependency parsing (chapter 3)

– Graph-based dependency parsing (chapter 4)

• Grammar-based parsing (chapter 5)

– Context-free dependency parsing

– Constraint-based dependency parsing

In chapter 6, we discuss issues concerning evaluation, both the evaluation of dependency parsers and
the use of dependencies as a basis for cross-framework evaluation, and in chapter 7, we compare the
approaches treated in earlier chapters, pointing out similarities and differences between methods, as
well as complementary strengths and weaknesses. We conclude the book with some reflections on
current trends and future prospects of dependency parsing in chapter 8.

1.3. SUMMARY AND FURTHER READING 9

1.3 SUMMARY AND FURTHER READING

In this chapter, we have introduced the basic notions of dependency grammar, compared dependency
structure to phrase structure, and discussed criteria for identifying dependency relations and syntactic
heads.There are several textbooks that give a general introduction to dependency grammar but most
of them in other languages than English, for example,Tarvainen (1982) and Weber (1997) in German
and Nikula (1986) in Swedish. For a basic introduction in English we refer to the opening chapter
of Mel’čuk (1988). Open issues in dependency grammar, and their treatment in different theories,
are discussed in chapter 3 of Nivre (2006b).

Tesnière’s seminal work was published posthumously as Tesnière (1959). (The French
text has been translated into German and Russian but not into English.) Other influen-
tial theories in the dependency grammar tradition include Functional Generative Descrip-
tion (Sgall et al., 1986); Meaning-Text Theory (Mel’čuk, 1988; Milicevic, 2006); Word Gram-
mar (Hudson, 1984, 1990, 2007); Dependency Unification Grammar (Hellwig, 1986, 2003); and
Lexicase (Starosta, 1988). Constraint-based theories of dependency grammar have a strong tradi-
tion, represented by Constraint Dependency Grammar, originally proposed by Maruyama (1990)
and further developed by Harper and Helzerman (1995) and Menzel and Schröder (1998) into
Weighted Constraint Dependency Grammar (Schröder, 2002); Functional Dependency Gram-
mar (Tapanainen and Järvinen, 1997; Järvinen and Tapanainen, 1998), largely developed from Con-
straint Grammar (Karlsson, 1990; Karlsson et al., 1995); and finally Topological Dependency
Grammar (Duchier and Debusmann, 2001), later evolved into Extensible Dependency Gram-
mar (Debusmann et al., 2004).

In the second half of the chapter, we have given an informal introduction to dependency
parsing and presented an overview of the most important approaches in this field, both data-driven
and grammar-based. A more thorough discussion of different approaches can be found in chapter
3 of Nivre (2006b). Grammar-based dependency parsing originates with the work on context-
free dependency parsing by Gaifman and Hays in the 1960s (Hays, 1964; Gaifman, 1965), and the
constraint-based approach was first proposed by Maruyama (1990).Data-driven dependency parsing
was pioneered by Eisner (1996b),using graph-based methods, and the transition-based approach was
first explored by Matsumoto and colleagues (Kudo and Matsumoto, 2002; Yamada and Matsumoto,
2003). The terms graph-based and transition-based to characterize the two classes of data-driven
methods were first used by McDonald and Nivre (2007), but essentially the same distinction was
proposed earlier by Buchholz and Marsi (2006), using the terms all pairs and stepwise.

Although we concentrate in this book on supervised methods for data-driven parsing, there is
also a considerable body of work on unsupervised parsing, which does not require annotated training
data, although the results are so far vastly inferior to supervised approaches in terms of parsing
accuracy. The interested reader is referred to Yuret (1998), Klein (2005), and Smith (2006).

Dependency parsing has recently been used in a number of different applications of natural lan-
guage processing. Relevant examples include language modeling (Chelba et al., 1997), information
extraction (Culotta and Sorensen, 2004), machine translation (Ding and Palmer, 2004; Quirk et al.,

10 CHAPTER 1. INTRODUCTION

2005), textual entailment (Haghighi et al., 2005), lexical ontology induction (Snow et al., 2005), and
question answering (Wang et al., 2007).

11

C H A P T E R 2

Dependency Parsing
In this chapter we formally introduce dependency graphs and dependency parsing, as well as the
primary notation used throughout the rest of the book.

2.1 DEPENDENCY GRAPHS AND TREES
As mentioned in the previous chapter, dependency graphs are syntactic structures over sentences.

Definition 2.1. A sentence is a sequence of tokens denoted by:

S = w0w1 . . . wn

We assume that the tokenization of a sentence is fixed and known at parsing time. That is to say
that dependency parsers will always operate on a pre-tokenized input and are not responsible for
producing the correct tokenization of an arbitrary string. Furthermore, w0 = root is an artificial
root token inserted at the beginning of the sentence and does not modify any other token in the
sentence. Each tokenwi typically represents a word and we will use word and token interchangeably.
However, the precise definition of wi is often language dependent and a token can be a morpheme
or a punctuation marker. In particular, it is not uncommon in highly inflected languages to tokenize
a sentence aggressively so that wi can be either a lemma or the affix of a word.

For simplicity we assume that a sentence is a sequence of unique tokens/words. Consider the
sentence:

Mary saw John and Fred saw Susan.

This sentence contains two different instances of the word saw and we assume each to be distinct
from the other. It is straight-forward to ensure this by simply storing an index referencing the position
of every word in the sequence. We assume such indices exist, even though we do not explicitly mark
their presence.

Definition 2.2. Let R = {r1, . . . , rm} be a finite set of possible dependency relation types that can
hold between any two words in a sentence. A relation type r ∈ R is additionally called an arc label.

For example, the dependency relation between the words had and effect in figure 1.1 is labeled with
the type r = OBJ. As stated earlier, we make no specific assumptions about the nature of R except
that it contains a fixed inventory of dependency types.

12 CHAPTER 2. DEPENDENCY PARSING

With these two definitions in hand, we can now define dependency graphs.

Definition 2.3. A dependency graphG = (V ,A) is a labeled directed graph (digraph) in the standard
graph-theoretic sense and consists of nodes,V , and arcs,A, such that for sentence S = w0w1 . . . wn

and label set R the following holds:

1. V ⊆ {w0, w1, . . . , wn}
2. A ⊆ V × R × V
3. if (wi, r, wj) ∈ A then (wi, r ′, wj) /∈ A for all r ′ �= r

The arc set A represents the labeled dependency relations of the particular analysis G. Specifically,
an arc (wi, r, wj) ∈ A represents a dependency relation from headwi to dependentwj labeled with
relation type r . A dependency graph G is thus a set of labeled dependency relations between the
words of S.

Nodes in the graph correspond directly to words in the sentence and we will use the terms
node and word interchangeably. A standard node set is the spanning node set that contains all the
words of the sentence, which we sometimes denote by VS = {w0, w1, . . . , wn}.

Without the third restriction, dependency graphs would be multi-digraphs as they would allow
more than one possible arc between each pair of nodes, i.e., one arc per label in R. This definition
of dependency graphs is specific to mono-stratal theories of syntactic dependencies, where the
entire dependency analysis is relative to a single graph over the words of the sentence. In contrast,
multi-stratal theories like Functional Generative Description, Meaning-Text Theory or Topological
Dependency Grammar assume that the true dependency analysis consists of multiple dependency
graphs, each typically representing one layer of the analysis such as the morphological, syntactic, or
semantic dependency analysis.

To illustrate this definition, consider the dependency graph in figure 1.1, which is represented
by:

1. G = (V ,A)
2. V = VS = {root, Economic, news, had, little, effect, on, financial, markets, .}

3. A = {(root, PRED, had), (had, SBJ, news), (had, OBJ, effect),(had, PU, .),
(news, ATT, Economic), (effect, ATT, little), (effect, ATT, on), (on, PC, markets),
(markets, ATT, financial)}

As discussed in the first chapter, the nature of a dependency (wi, r, wj) is not always straight-forward
to define and differs across linguistic theories. For the remainder of this book we assume that it is
fixed, being either specified by a formal grammar or implicit in a labeled corpus of dependency
graphs.

2.1. DEPENDENCY GRAPHS AND TREES 13

Finally, having defined sentences, dependency relation types and dependency graphs, we can
now proceed to a central definition,

Definition 2.4. A well-formed dependency graph G = (V ,A) for an input sentence S and depen-
dency relation set R is any dependency graph that is a directed tree originating out of nodew0 and has
the spanning node set V = VS . We call such dependency graphs dependency trees.

Notation 2.5. For an input sentence S and a dependency relation set R, denote the space of all
well-formed dependency graphs as GS .

The dependency graphs in figures 1.1 and 1.3 are both trees. For the remainder of the book we only
consider parsing systems that produce dependency trees, that is, parsing systems that produce a tree
from the set GS for a sentence S.

The restriction of well-formed dependency graphs to dependency trees may seem rather strong
at first given the flexibility of language. However, most mono-stratal dependency theories make this
assumption (a notable exception being Hudson’s Word Grammar) as do most multi-stratal theories
for each individual layer of the analysis. In the next section we break down the various properties of
dependency trees and examine each from a linguistic or computational point of view. Many of these
properties are generally agreed upon across different dependency theories and will help to motivate
the restriction of well-formed dependency graphs to trees.

2.1.1 PROPERTIES OF DEPENDENCY TREES
First, we will define a few notational conventions that will assist in our analysis of dependency trees.

Notation 2.6. The notation wi → wj indicates the unlabeled dependency relation (or dependency
relation for short) in a tree G = (V ,A). That is, wi → wj if and only if (wi, r, wj) ∈ A for some
r ∈ R.

Notation 2.7. The notation wi →∗ wj indicates the reflexive transitive closure of the dependency
relation in a tree G = (V ,A). That is,wi →∗ wj if and only if i = j (reflexive) or both wi →∗ wi′
and wi′ → wj hold (for some wi′ ∈ V).

Notation 2.8. The notation wi ↔ wj indicates the undirected dependency relation in a tree G =
(V ,A). That is,wi ↔ wj if and only if either wi → wj or wj → wi .

Notation 2.9. The notation wi ↔∗ wj indicates the reflexive transitive closure of the undirected
dependency relation in a tree G = (V ,A). That is, wi ↔∗ wj if and only if i = j (reflexive) or both
wi ↔∗ wi′ and wi′ ↔ wj hold (for some wi′ ∈ V).

14 CHAPTER 2. DEPENDENCY PARSING

With this notation in hand, we can now examine a set of dependency tree properties that are always
true. These properties are true of any directed tree, but we examine them from the perspective of
their linguistic motivation.

Property 2.10. A dependency tree G = (V ,A) always satisfies the root property, which states that
there does not exist wi ∈ V such that wi → w0.

Property 2.10 holds from the definition of dependency trees as rooted directed trees originating out
of w0. This property is artificial since we have already indicated the presence of the word root and
defined its unique nature in the definition of dependency trees. The addition of an artificial root
node may seem spurious, but as we discuss subsequent properties below, it will become clear that
the artificial root provides us with both linguistic and algorithmic generalization ability.

Property 2.11. A dependency treeG = (V ,A) always satisfies the spanning property over the words
of the sentence, which states that V = VS .

Property 2.11 is also explicitly stated in the definition of dependency trees and therefore must hold
for all dependency trees. The spanning property is widely accepted in dependency theories since a
word in a sentence almost always has some relevance to the dependency analysis and in particular the
syntactic analysis of the sentence. This property is sometimes relaxed for punctuation, for example
words like periods or other sentence boundary markers that play no role in the dependency analysis
of the sentence.The property may be further relaxed for additional punctuation such as hyphens and
brackets – as well as some comma usage – that implicitly participate in the analysis by providing cues
for the intended reading but again play no explicit role in the analysis. When considering semantic
dependencies the spanning property is less universal as many words simply facilitate the reader’s
understanding of the true semantic interpretation and do not actually have an explicit semantic
function.

In practice it is irrelevant if linguistic theories agree on whether a dependency analysis should
be spanning over all the words in the sentence. This is because the artificial root node allows one
to be theory general with respect to the spanning property as we can simply create an arc from the
root word to all wi ∈ V that do not participate in the analysis. The result is always a dependency
tree where the spanning property holds.

Property 2.12. A dependency treeG = (V ,A) satisfies the connectedness property, which states that
for all wi,wj ∈ V it is the case that wi ↔∗ wj . That is, there is a path connecting every two words
in a dependency tree when the direction of the arc (dependency relation) is ignored. This notion of
connectedness is equivalent to a weakly connected directed graph from graph theory.

Property 2.12 holds due to the fact that all nodes in a directed tree are weakly connected through
the root. The connectedness property simply states that all words in the sentence interact with
one another in the dependency analysis, even if at a distance or through intermediate words. This

2.1. DEPENDENCY GRAPHS AND TREES 15

property is not universally accepted, as a sentence may be fragmented into a number of disjoint
units. However, we can again use the artificial root word and make this property universal by simply
creating a dependency relation from the root to some word in each of the dependency fragments.
Thus, the artificial root word again allows one to be theory-neutral, this time with respect to depen-
dency analysis connectedness. Furthermore, we also gain a computational generalization through
the artificial root node. As we will see in Chapter 3, some dependency parsing algorithms do not
actually produce a single dependency tree but rather a set of disjoint dependency trees, commonly
called a dependency forest. These algorithms can be trivially modified to return a dependency tree by
adding a dependency arc from the artificial root word to the root of each disjoint tree.

Property 2.13. A dependency tree G = (V ,A) satisfies the single-head property, which states that
for all wi,wj ∈ V , if wi → wj then there does not exist wi′ ∈ V such that i′ �= i and wi′ → wj .
That is, each word in a dependency tree is the dependent of at most one head.

Property 2.13 holds due to the fact that a directed tree is specifically characterized by each node
having a single incoming arc. The single-head property is not universal in dependency theories.
The example from chapter 1 – She bought and ate an apple – is an instance where one might wish
to break the single-head property. In particular, she and apple can be viewed as dependents of both
verbs in the coordinated verb phrase and as a result should participate as the dependent in multiple
dependency arcs in the tree. However, many formalisms simply posit that she and apple modify the
head of the coordinate phrase (whether it is the conjunction or one of the verbs) and assume that
this dependency is propagated to all the conjuncts.

Property 2.14. A dependency treeG = (V ,A) satisfies the acyclicity property, which states that for
all wi,wj ∈ A, if wi → wj , then it is not the case that wj →∗ wi . That is, a dependency tree does
not contains cycles.

The acyclicity property also makes sense linguistically as any dependency tree not satisfying this
property would imply that a word implicitly is dependent upon itself.

Property 2.15. A dependency tree G = (V ,A) satisfies the arc size property, which states that
|A| = |V | − 1.

Property 2.15 falls out of the unique root and single-head properties. We listed this property as it
can simplify both algorithm construction and analysis.

16 CHAPTER 2. DEPENDENCY PARSING

2.1.2 PROJECTIVE DEPENDENCY TREES
Up to this point we have presented properties that hold for all dependency trees. However, many
computational systems restrict the class of well-formed dependency graphs even further. The most
common restriction is to the set of projective dependency trees, which we examine here.

Definition 2.16. An arc (wi, r, wj) ∈ A in a dependency tree G = (V ,A) is projective if and only
if wi →∗ wk for all i < k < j when i < j , or j < k < i when j < i.

That is to say, an arc in a tree is projective if there is a directed path from the head word wi to all
the words between the two endpoints of the arc.

Definition 2.17. A dependency tree G = (V ,A) is a projective dependency tree if (1) it is a depen-
dency tree (definition 2.4), and (2) all (wi, r, wj) ∈ A are projective.

A similar definition exists for non-projective dependency trees.

Definition 2.18. A dependency tree G = (V ,A) is a non-projective dependency tree if (1) it is a
dependency tree (definition 2.4), and (2) it is not projective.

The trees in figures 1.1 and 1.3 are both projective dependency trees. Linguistically, projectivity is
too rigid a restriction. Consider the sentence in figure 2.1. The dependency tree for this sentence is
non-projective since the prepositional phrase on the issue that modifies the noun hearing is separated
sequentially from its head by the main verb group. As a result, the dependency (hearing, PP, on)
does not satisfy the projective arc definition, requiring a non-projective analysis to account for the
syntactic validity of this sentence.

In English, non-projective constructions occur with little frequency relative to other languages
that are highly inflected and, as a result, have less constraints on word order. In particular, sentences
in languages like Czech, Dutch and Turkish frequently require non-projective dependency trees to
correctly analyze a significant fraction of sentences.As a result,most linguistic theories of dependency
parsing do not presume that dependency trees are projective. Thus, throughout most of this book
we will not assume that dependency trees are projective and make it clear when we are referring to
the set of all dependency trees, or the subset of projective dependency trees.

Notation 2.19. For an input sentence S and a dependency relation set R, denote the space of all
projective dependency trees as GpS .

Even though they are too restrictive, projective dependency trees have certain properties of interest,
primarily from a computational perspective.

Property 2.20. A projective dependency treeG = (V ,A) satisfies the planar property, which states
that it is possible to graphically configure all the arcs of the tree in the space above the sentence
without any arcs crossing.

2.1. DEPENDENCY GRAPHS AND TREES 17

Figure 2.1: Non-projective dependency tree for an English sentence.

Figure 2.2: Projective dependency tree drawn in the standard way (left) and as a nested tree (right).

The left tree in figure 2.2 displays a projective tree drawn without arc crossings, whereas the tree in
figure 2.1 shows a non-projective tree where it is impossible to configure the arcs so that none cross.
The inverse of this property is true as well: all dependency trees that can be drawn so that no arcs
cross are projective dependency trees. This direction of the equivalence specifically relies on the fact
that the left-most word in the sentence is the root of the tree. Consider the case where S = w0w1w2

with arcs w0 → w2 and w1 → w0 in a dependency tree G, i.e., w1 is the root. Such a tree can be
drawn with no arcs crossing, but is not projective.

Property 2.21. A projective dependency tree G = (V ,A) satisfies the nested property, which states
that for all nodes wi ∈ V , the set of words {wj |wi →∗ wj } is a contiguous subsequence of the
sentence S.

The set {wj |wi →∗ wj } is often called the yield of wi in G. Figure 2.2 illustrates both a projective
dependency tree and its nested depiction. Proving that all projective dependency trees are nested
trees is straight-forward. If we assume that the yield of wi is not contiguous, that means that there
is some nodewj between the end-points of the yield such thatwi →∗ wj does not hold. If we trace
dependency arcs back from wj we will eventually reach a node wk between the end-points of the

18 CHAPTER 2. DEPENDENCY PARSING

yield of wi such that wk′ → wk is in the tree but wk′ is not between the end-points of the yield of
wi . But such an arc would necessarily cross at least one other arc and thus the tree could not have
been projective in the first place.

The nested tree property is the primary reason that many computational dependency parsing
systems have focused on producing trees that are projective as it has been shown that certain depen-
dency grammars enforcing projectivity are (weakly) equivalent in generative capacity to context-free
grammars, which are well understood computationally from both complexity and formal power
standpoints.

2.2 FORMAL DEFINITION OF DEPENDENCY PARSING

In this section, we aim to make mathematically precise the dependency parsing problem for both
data-driven and grammar-based methods. This will include introducing notation and defining both
the general problems of learning, which is required for data-driven methods, and parsing, which is
required for both data-driven and grammar-based methods.To reiterate a point made in the previous
chapter, data-driven and grammar-based methods are compatible. A grammar-based method can
be data-driven when its parameters are learned from a labeled corpus.

As with our earlier convention, we useG to indicate a dependency tree and G to indicate a set
of dependency trees. Similarly,S = w0w1 . . . wn denotes a sentence and S denotes a set of sentences.
For a given sentence S, we use GS to indicate the space of dependency trees for that sentence, and
we use GpS for the subset of projective dependency trees.

An important function that will be used at various points throughout the book is the feature
function f(x) : X → Y that maps some input x to a feature representation in the space Y . Examples
include mappings from an input sentence S or history of parsing decisions to a set of predictive
symbolic or binary predicates. When Y is a collection of predicates (either symbolic or numeric),
then we often refer to f as the feature vector. Possibly the most common mapping for f is to a high
dimensional real valued feature vector, i.e., Y = R

m. The features used in a parsing system differ by
the parsing scheme and will be discussed in further detail in later chapters.

Let us now proceed with an important definition:

Definition 2.22. A dependency parsing model consists of a set of constraints � that define the space
of permissible dependency structures for a given sentence, a set of parameters λ (possibly null), and
fixed parsing algorithm h. A model is denoted by M = (�,λ, h).

The constraints� are specific to the underlying formalism used by a system.Minimally the constraint
set maps an arbitrary sentence S and dependency type set R to the set of well-formed dependency
graphs GS , in effect restricting the space of dependency graphs to dependency trees. Additionally,�
could encode more complex mechanisms such as context-free grammar or a constraint dependency
grammar that further limit the space of dependency graphs.

2.3. SUMMARY AND FURTHER READING 19

The learning phase of a parser aims to construct the parameter set λ, and it is specific to data-
driven systems. The parameters are learned using a training set D that consists of pairs of sentences
and their corresponding dependency trees:

D = {(Sd,Gd)}|D|d=0

Parameters are typically learned by optimizing some function over D and come from some predefined
class of parameters �. Common optimizations include minimizing training set parsing error or
maximizing conditional probability of trees given sentences for examples in D. The nature of λ and
the optimization depend on the specific learning methods employed. For example, a single parameter
might represent the likelihood of a dependency arc occurring in a dependency tree for a sentence, or
it might represent the likelihood of satisfying some preference in a formal grammar. In the following
chapters, these specifics will be addressed when we examine the major approaches to dependency
parsing. For systems that are not data-driven, λ is either null or uniform rendering it irrelevant.

After a parsing model has defined a set of formal constraints and learned appropriate pa-
rameters, the model must fix a parsing algorithm to solve the parsing problem. That is, given the
constraints, parameters and a new sentence S, how does the system find the single most likely
dependency tree for that sentence:

G = h(S, �,λ)
The function h is a search over the set of well-formed dependency graphs GS for input sentence S
and produces a single tree or null if � defines a grammar in which S is not a member of the defined
language. As we will see in the remaining chapters, h can take many algorithmic forms including
greedy and recursive algorithms as well as those based on chart-parsing techniques. Furthermore, h
can be exact or approximate relative to some objective function.

To give a quick illustration of the notation defined here, we can apply it to the well known case
of a probabilistic context-free grammar (PCFG) for phrase structure parsing – a grammar-based
and data-driven parsing system. In that case, � = (N,�,�, start) is a standard CFG with non-
terminals N , terminals �, production rules �, and start symbol start ∈ N , all of which defines a
space of nested phrase structures.λ is a set of probabilities, one for each production in the grammar.λ
is typically set by maximizing the likelihood of the training set D relative to appropriate consistency
constraints. The fixed parsing algorithm h can then be a number of context-free algorithms such as
CKY (Younger, 1967) or Earley’s algorithm (Earley, 1970).

2.3 SUMMARY AND FURTHER READING
In this chapter, we discussed the formal definition of dependency graphs, as well as a set of properties
of these graphs that are common among many systems (both linguistic and computational). A key
definition is that of a dependency tree, which is any well-formed dependency graph that is a directed
spanning tree originating out of the root word w0. There have been many studies of the structural
properties of dependency graphs and trees that go beyond what is discussed here. Mentioned earlier

20 CHAPTER 2. DEPENDENCY PARSING

was work showing that certain projective dependency grammars are weakly equivalent to context-free
grammars (Hays, 1964; Gaifman, 1965). Structural properties of dependency graphs that have been
studied include: planarity, which is strongly correlated to projectivity (Kuhlmann and Nivre, 2006;
Havelka, 2007); gap-degree, which measures the discontinuity of subgraphs (Bodirsky et al., 2005;
Kuhlmann and Nivre, 2006); well-nestedness, which is a binary property on the overlap between sub-
trees of the graph (Bodirsky et al., 2005; Kuhlmann and Nivre,2006); and arc-degree,which measures
the number of disconnected subgraphs an arc spans in the graph (Nivre,2006a; Kuhlmann and Nivre,
2006). Some interesting facts arise out of these studies. This includes the relation of dependency
graph structural constraints to derivations in tree adjoining grammars (Bodirsky et al., 2005) as well
as empirical statistics on how frequently certain constraints are obeyed in various dependency tree-
banks (Nivre, 2006a; Kuhlmann and Nivre, 2006; Havelka, 2007). In terms of projectivity, Marcus
(1965) proves the equivalence of a variety of projectivity definitions and Havelka (2007) discusses
many of the above properties in relation to the projective constraint.

The final section of this chapter introduced the formal definition of dependency parsing
including the definition of a parsing model and its sub-components: the formal constraints, the
parameters, and the parsing algorithm. These definitions, as well as those given for dependency
trees, form the basis for the next chapters that delve into different parsing formalisms and their
relation to one another.

21

C H A P T E R 3

Transition-Based Parsing
In data-driven dependency parsing, the goal is to learn a good predictor of dependency trees, that
is, a model that can be used to map an input sentence S = w0w1 . . . wn to its correct dependency
tree G. As explained in the previous chapter, such a model has the general form M = (�,λ, h),
where � is a set of constraints that define the space of permissible structures for a given sentence,
λ is a set of parameters, the values of which have to be learned from data, and h is a fixed parsing
algorithm. In this chapter, we are going to look at systems that parameterize a model over the
transitions of an abstract machine for deriving dependency trees, where we learn to predict the next
transition given the input and the parse history, and where we predict new trees using a greedy,
deterministic parsing algorithm – this is what we call transition-based parsing. In chapter 4, we will
instead consider systems that parameterize a model over sub-structures of dependency trees, where
we learn to score entire dependency trees given the input, and where we predict new trees using
exact inference – graph-based parsing. Since most transition-based and graph-based systems do not
make use of a formal grammar at all, � will typically only restrict the possible dependency trees for
a sentence to those that satisfy certain formal constraints, for example, the set of all projective trees
(over a given label set). In chapter 5, by contrast, we will deal with grammar-based systems, where
� constitutes a formal grammar pairing each input sentence with a more restricted (possibly empty)
set of dependency trees.

3.1 TRANSITION SYSTEMS

A transition system is an abstract machine, consisting of a set of configurations (or states) and transitions
between configurations. One of the simplest examples is a finite state automaton, which consists of
a finite set of atomic states and transitions defined on states and input symbols, and which accepts
an input string if there is a sequence of valid transitions from a designated initial state to one of
several terminal states. By contrast, the transition systems used for dependency parsing have complex
configurations with internal structure, instead of atomic states, and transitions that correspond to
steps in the derivation of a dependency tree. The idea is that a sequence of valid transitions, starting
in the initial configuration for a given sentence and ending in one of several terminal configurations,
defines a valid dependency tree for the input sentence. In this way, the transition system determines
the constraint set� in the parsing model, since it implicitly defines the set of permissible dependency
trees for a given sentence, but it also determines the parameter set λ that have to be learned from
data, as we shall see later on. For most of this chapter, we will concentrate on a simple stack-based
transition system, which implements a form of shift-reduce parsing and exemplifies the most widely

22 CHAPTER 3. TRANSITION-BASED PARSING

used approach in transition-based dependency parsing. In section 3.4, we will briefly discuss some
of the alternative systems that have been proposed.

We start by defining configurations as triples consisting of a stack, an input buffer, and a set
of dependency arcs.

Definition 3.1. Given a set R of dependency types, a configuration for a sentence S = w0w1 . . . wn

is a triple c = (σ, β,A), where

1. σ is a stack of words wi ∈ VS ,

2. β is a buffer of words wi ∈ VS ,

3. A is a set of dependency arcs (wi, r, wj) ∈ VS × R × VS .

The idea is that a configuration represents a partial analysis of the input sentence, where the words
on the stack σ are partially processed words, the words in the buffer β are the remaining input words,
and the arc set A represents a partially built dependency tree. For example, if the input sentence is

Economic news had little effect on financial markets.

then the following is a valid configuration, where the stack contains the words root and news (with
the latter on top), the buffer contains all the remaining words except Economic, and the arc set
contains a single arc connecting the head news to the dependent Economic with the label ATT:

([root, news]σ , [had, little, effect, on, financial, markets, .]β , {(news, ATT, Economic)}A)

Note that we represent both the stack and the buffer as simple lists, with elements enclosed in square
brackets (and subscripts σ and β when needed), although the stack has its head (or top) to the right
for reasons of perspicuity. When convenient, we use the notation σ |wi to represent the stack which
results from pushing wi onto the stack σ , and we use wi |β to represent a buffer with head wi and
tail β.1

Definition 3.2. For any sentence S = w0w1 . . . wn,

1. the initial configuration c0(S) is ([w0]σ , [w1, . . . , wn]β , ∅),
2. a terminal configuration is a configuration of the form (σ , []β ,A) for any σ and A.

Thus, we initialize the system to a configuration with w0 = root on the stack, all the remaining
words in the buffer, and an empty arc set; and we terminate in any configuration that has an empty
buffer (regardless of the state of the stack and the arc set).

1The operator | is taken to be left-associative for the stack and right-associative for the buffer.

3.1. TRANSITION SYSTEMS 23

Transition Precondition

Left-Arcr (σ |wi,wj |β,A)⇒ (σ,wj |β,A∪{(wj , r, wi)}) i �= 0

Right-Arcr (σ |wi,wj |β,A)⇒ (σ,wi |β,A∪{(wi, r, wj)})
Shift (σ,wi |β,A)⇒ (σ |wi, β,A)

Figure 3.1: Transitions for shift-reduce dependency parsing.

Having defined the set of configurations, including a unique initial configuration and a set of
terminal configurations for any sentence, we now define transitions between configurations. Formally
speaking, a transition is a partial function from configurations to configurations, i.e., a transition
maps a given configuration to a new configuration but may be undefined for certain configurations.
Conceptually, a transition corresponds to a basic parsing action that adds an arc to the dependency
tree or modifies the stack or the buffer. The transitions needed for shift-reduce dependency parsing
are defined in figure 3.1 and contain three types of transitions:

1. Transitions Left-Arcr (for any dependency label r) add a dependency arc (wj , r, wi) to the
arc set A, where wi is the word on top of the stack and wj is the first word in the buffer. In
addition, they pop the stack. They have as precondition that both the stack and the buffer are
non-empty and that wi �= root.2

2. Transitions Right-Arcr (for any dependency label r) add a dependency arc (wi, r, wj) to the
arc set A, where wi is the word on top of the stack and wj is the first word in the buffer. In
addition, they pop the stack and replace wj by wi at the head of buffer.3 They have as their
only precondition that both the stack and the buffer are non-empty.

3. The transition Shift removes the first wordwi in the buffer and pushes it on top of the stack.
It has as its only precondition that the buffer is non-empty.

We use the symbol T to refer to the set of permissible transitions in a given transition system.
As noted above, transitions correspond to elementary parsing actions. In order to define complete
parses, we introduce the notion of a transition sequence.

Definition 3.3. A transition sequence for a sentence S = w0w1 . . . wn is a sequence of configurations
C0,m = (c0, c1, . . . , cm) such that
2The latter precondition guarantees that the dependency graph defined by the arc set always satisfies the root property.
3This may seem counterintuitive, given that the buffer is meant to contain words that have not yet been processed, but it is necessary
in order to allow wj to attach to a head on its left.

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root,Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news,ATT,Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect,ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial,markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets,ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on,PC,markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect,ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had,OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had,PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root,PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS,Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

3.2. PARSING ALGORITHM 25

Every transition sequence in this system defines a dependency graph with the spanning, root,
and single-head properties, but not necessarily with the connectedness property. This means that
not every transition sequence defines a dependency tree, as defined in chapter 2. To take a trivial
example, a transition sequence for a sentence S consisting only of Shift transitions defines the
graph G = (VS,∅), which is not connected but which satisfies all the other properties. However,
since any transition sequence defines an acyclic dependency graph G, it is trivial to convert G into
a dependency tree G′ by adding arcs of the form (root, r, wi) (with some dependency label r) for
every wi that is a root in G. As noted in section 2.1.1, a dependency graph G that satisfies the
spanning, root, single-head, and acyclic properties is equivalent to a set of dependency trees and is
often called a dependency forest.

Another important property of the system is that every transition sequence defines a projective
dependency forest,4 which is advantageous from the point of view of efficiency but overly restrictive
from the point of view of representational adequacy. In sections 3.4 and 3.5, we will see how this
limitation can be overcome, either by modifying the transition system or by complementing it with
pre- and post-processing.

Given that every transition sequence defines a projective dependency forest, which can be
turned into a dependency tree, we say that the system is sound with respect to the set of projective
dependency trees. A natural question is whether the system is also complete with respect to this class
of dependency trees, that is, whether every projective dependency tree is defined by some transition
sequence. The answer to this question is affirmative, although we will not prove it here.5 In terms
of our parsing model M = (�,λ, h), we can therefore say that the transition system described in
this section corresponds to a set of constraints � characterizing the set GpS of projective dependency
trees for a given sentence S (relative to a set of arc labels R).

3.2 PARSING ALGORITHM
The transition system defined in section 3.1 is nondeterministic in the sense that there is usually
more than one transition that is valid for any non-terminal configuration.6 Thus, in order to perform
deterministic parsing, we need a mechanism to determine for any non-terminal configuration c, what
is the correct transition out of c. Let us assume for the time being that we are given an oracle, that
is, a function o from configurations to transitions such that o(c) = t if and only if t is the correct
transition out of c. Given such an oracle, deterministic parsing can be achieved by the very simple
algorithm in figure 3.3.

We start in the initial configuration c0(S) and, as long as we have not reached a terminal
configuration, we use the oracle to find the optimal transition t = o(c) and apply it to our current
configuration to reach the next configuration t (c). Once we reach a terminal configuration, we
simply return the dependency tree defined by our current arc set. Note that, while finding the
4A dependency forest is projective if and only if all component trees are projective.
5The interested reader is referred to Nivre (2008) for proofs of soundness and completeness for this and several other transition
systems for dependency parsing.

6The notable exception is a configuration with an empty stack, where only Shift is possible.

26 CHAPTER 3. TRANSITION-BASED PARSING

h(S, �, o)
1 c← c0(S)

2 while c is not terminal
3 t ← o(c)

4 c← t (c)

5 return Gc

Figure 3.3: Deterministic, transition-based parsing with an oracle.

optimal transition t = o(c) is a hard problem, which we have to tackle using machine learning,
computing the next configuration t (c) is a purely mechanical operation.

It is easy to show that, as long as there is at least one valid transition for every non-terminal
configuration, such a parser will construct exactly one transition sequence C0,m for a sentence S and
return the dependency tree defined by the terminal configuration cm, i.e.,Gcm = (VS,Acm). To see
that there is always at least one valid transition out of a non-terminal configuration, we only have
to note that such a configuration must have a non-empty buffer (otherwise it would be terminal),
which means that at least Shift is a valid transition.

The time complexity of the deterministic, transition-based parsing algorithm is O(n), where
n is the number of words in the input sentence S, provided that the oracle and transition functions
can be computed in constant time. This holds since the worst-case running time is bounded by
the maximum number of transitions in a transition sequence C0,m for a sentence S = w0w1 . . . wn.
Since a Shift transition decreases the length of the buffer by 1, no other transition increases the
length of the buffer, and any configuration with an empty buffer is terminal, the number of Shift
transitions in C0,m is bounded by n. Moreover, since both Left-Arcr and Right-Arcr decrease
the height of the stack by 1, only Shift increases the height of the stack by 1, and the initial height
of the stack is 1, the combined number of instances of Left-Arcr and Right-Arcr in C0,m is also
bounded by n. Hence, the worst-case time complexity is O(n).

So far, we have seen how transition-based parsing can be performed in linear time if restricted
to projective dependency trees, and provided that we have a constant-time oracle that predicts the
correct transition out of any non-terminal configuration. Of course, oracles are hard to come by
in real life, so in order to build practical parsing systems, we need to find some other mechanism
that we can use to approximate the oracle well enough to make accurate parsing feasible. There
are many conceivable ways of approximating oracles, including the use of formal grammars and
disambiguation heuristics. However, the most successful strategy to date has been to take a data-
driven approach, approximating oracles by classifiers trained on treebank data. This leads to the
notion of classifier-based parsing, which is an essential component of transition-based dependency
parsing.

3.3. CLASSIFIER-BASED PARSING 27

h(S, �,λ)
1 c← c0(S)

2 while c is not terminal
3 t ← λc

4 c← t (c)

5 return Gc

Figure 3.4: Deterministic, transition-based parsing with a classifier.

3.3 CLASSIFIER-BASED PARSING
Let us step back for a moment to our general characterization of a data-driven parsing model as
M = (�,λ, h), where � is a set of constraints on dependency graphs, λ is a set of model parameters
and h is a fixed parsing algorithm. In the previous two sections, we have shown how we can define the
parsing algorithm h as deterministic best-first search in a transition system (although other search
strategies are possible, as we shall see later on).The transition system determines the set of constraints
�, but it also defines the model parameters λ that need to be learned from data, since we need to be
able to predict the oracle transition o(c) for every possible configuration c (for any input sentence S).
We use the notation λc ∈ λ to denote the transition predicted for c according to model parameters
λ, and we can think of λ as a huge table containing the predicted transition λc for every possible
configuration c. In practice, λ is normally a compact representation of a function for computing λc
given c, but the details of this representation need not concern us now. Given a learned model, we
can perform deterministic, transition-based parsing using the algorithm in figure 3.4, where we have
simply replaced the oracle function o by the learned parameters λ (and the function value o(c) by
the specific parameter value λc).

However, in order to make the learning problem tractable by standard machine learning
techniques, we need to introduce an abstraction over the infinite set of possible configurations. This
is what is achieved by the feature function f(x) : X → Y (cf. section 2.2). In our case, the domain X
is the set C of possible configurations (for any sentence S) and the range Y is a product ofm feature
value sets, which means that the feature function f(c) : C → Y maps every configuration to an m-
dimensional feature vector. Given this representation, we then want to learn a classifier g : Y → T ,
where T is the set of possible transitions, such that g(f(c)) = o(c) for any configuration c. In other
words, given a training set of gold standard dependency trees from a treebank, we want to learn a
classifier that predicts the oracle transition o(c) for any configuration c, given as input the feature
representation f(c). This gives rise to three basic questions:

• How do we represent configurations by feature vectors?

• How do we derive training data from treebanks?

• How do we train classifiers?

28 CHAPTER 3. TRANSITION-BASED PARSING

We will deal with each of these questions in turn, starting with feature representations in section 3.3.1,
continuing with the derivation of training data in section 3.3.2, and finishing off with the training
of classifiers in section 3.3.3.

3.3.1 FEATURE REPRESENTATIONS
A feature representation f(c) of a configuration c is anm-dimensional vector of simple features fi (c)
(for 1 ≤ i ≤ m). In the general case, these simple features can be defined by arbitrary attributes of a
configuration, which may be either categorical or numerical. For example, “the part of speech of the
word on top of the stack” is a categorical feature, with values taken from a particular part-of-speech
tagset (e.g., NN for noun, VB for verb, etc.). By contrast, “the number of dependents previously
attached to the word on top of the stack” is a numerical feature, with values taken from the set
{0, 1, 2, …}. The choice of feature representations is partly dependent on the choice of learning
algorithm, since some algorithms impose special restrictions on the form that feature values may
take, for example, that all features must be numerical. However, in the interest of generality, we will
ignore this complication for the time being and assume that features can be of either type. This is
unproblematic since it is always possible to convert categorical features to numerical features, and it
will greatly simplify the discussion of feature representations for transition-based parsing.

The most important features in transition-based parsing are defined by attributes of words,
or tree nodes, identified by their position in the configuration. It is often convenient to think of
these features as defined by two simpler functions, an address function identifying a particular word
in a configuration (e.g., the word on top of the stack) and an attribute function selecting a specific
attribute of this word (e.g., its part of speech). We call these features configurational word features
and define them as follows.

Definition 3.4. Given an input sentence S = w0w1 . . . wn with node set VS , a function (v ◦ a)(c) :
C → Y composed of

1. an address function a(c) : C → VS ,

2. an attribute function v(w) : VS → Y .

is a configurational word feature.

An address function can in turn be composed of simpler functions, which operate on different
components of the input configuration c. For example:

• Functions that extract the kth word (from the top) of the stack or the kth word (from the
head) of the buffer.

• Functions that map a word w to its parent, leftmost child, rightmost child, leftmost sibling,
or rightmost sibling in the dependency graph defined by c.

3.3. CLASSIFIER-BASED PARSING 29

Table 3.1: Feature model for transition-based
parsing.

fi Address Attribute
1 STK[0] FORM
2 BUF[0] FORM
3 BUF[1] FORM
4 LDEP(STK[0]) DEPREL
5 RDEP(STK[0]) DEPREL
6 LDEP(BUF[0]) DEPREL
7 RDEP(BUF[0]) DEPREL

By defining such functions, we can construct arbitrarily complex address functions that extract, e.g.,
“the rightmost sibling of the leftmost child of the parent of the word on top of the stack” although
the address functions used in practice typically combine at most three such functions. It is worth
noting that most address functions are partial, which means that they may fail to return a word. For
example, a function that is supposed to return the leftmost child of the word on top of the stack is
undefined if the stack is empty or if the word on top of the stack does not have any children. In
this case, any feature defined with this address function will also be undefined (or have a special null
value).

The typical attribute functions refer to some linguistic property of words, which may be given
as input to the parser or computed as part of the parsing process. We can exemplify this with the
word markets from the sentence in figure 1.1:

• Identity of wi = markets

• Identity of lemma of wi = market

• Identity of part-of-speech tag for wi = NNS

• Identity of dependency label for wi = PC

The first three attributes are static in the sense that they are constant, if available at all, in every
configuration for a given sentence.That is, if the input sentence has been lemmatized and tagged for
parts of speech in preprocessing, then the values of these features are available for all words of the
sentence, and their values do not change during parsing. By contrast, the dependency label attribute
is dynamic in the sense that it is available only after the relevant dependency arc has been added to
the arc set.Thus, in the transition sequence in figure 3.2, the dependency label for the word markets is
undefined in the first twelve configurations, but has the value PC in all the remaining configurations.
Hence, such attributes can be used to define features of the transition history and the partially built
dependency tree, which turns out to be one of the major advantages of the transition-based approach.

30 CHAPTER 3. TRANSITION-BASED PARSING

f(c0) = (root Economic news null null null null)
f(c1) = (Economic news had null null null null)
f(c2) = (root news had null null ATT null)
f(c3) = (news had little ATT null null null)
f(c4) = (root had little null null SBJ null)
f(c5) = (had little effect SBJ null null null)
f(c6) = (little effect on null null null null)
f(c7) = (had effect on SBJ null ATT null)
f(c8) = (effect on financial ATT null null null)
f(c9) = (on financial markets null null null null)

f(c10) = (financial markets . null null null null)
f(c11) = (on markets . null null ATT null)
f(c12) = (effect on . ATT null null ATT)
f(c13) = (had effect . SBJ null ATT ATT)
f(c14) = (root had . null null SBJ OBJ)
f(c15) = (had . null SBJ OBJ null null)
f(c16) = (root had null null null SBJ PU)
f(c17) = (null root null null null null PRED)
f(c18) = (root null null null PRED null null)

Figure 3.5: Feature vectors for the configurations in figure 3.2.

Let us now try to put all the pieces together and examine a complete feature representation
using only configurational word features. Table 3.1 shows a simple model with seven features, each
defined by an address function and an attribute function. We use the notation STK[i] and BUF[i]
for the ith word in the stack and in the buffer, respectively,7 and we use LDEP(w) and RDEP(w)
for the farthest child of w to the left and to the right, respectively. The attribute functions used
are FORM for word form and DEPREL for dependency label. In figure 3.5, we show how the
value of the feature vector changes as we go through the configurations of the transition sequence
in figure 3.2.8

Although the feature model defined in figure 3.1 is quite sufficient to build a working parser,
a more complex model is usually required to achieve good parsing accuracy. To give an idea of the
complexity involved, table 3.2 depicts a model that is more representative of state-of-the-art parsing
systems. In table 3.2, rows represent address functions, defined using the same operators as in the
earlier example, while columns represent attribute functions, which now also include LEMMA (for

7Note that indexing starts at 0, so that STK[0] is the word on top of the stack, while BUF[0] is the first word in the buffer.
8The special value null is used to indicate that a feature is undefined in a given configuration.

3.3. CLASSIFIER-BASED PARSING 31

Table 3.2: Typical feature model for transition-based parsing with rows rep-
resenting address functions, columns representing attribute functions, and cells
with + representing features.

Attributes
Address FORM LEMMA POSTAG FEATS DEPREL
STK[0] + + + +
STK[1] +
LDEP(STK[0]) +
RDEP(STK[0]) +
BUF[0] + + + +
BUF[1] + +
BUF[2] +
BUF[3] +
LDEP(BUF[0]) +
RDEP(BUF[0]) +

lemma or base form) and FEATS (for morphosyntactic features in addition to the basic part of
speech). Thus, each cell represents a possible feature, obtained by composing the corresponding
address function and attribute function, but only cells containing a + sign correspond to features
present in the model.

We have focused in this section on configurational word features, i.e., features that can be
defined by the composition of an address function and an attribute function, since these are the
most important features in transition-based parsing. In principle, however, features can be defined
over any properties of a configuration that are believed to be important for predicting the correct
transition. One type of feature that has often been used is the distance between two words, typically
the word on top of the stack and the first word in the input buffer. This can be measured by the
number of words intervening, possibly restricted to words of a certain type such as verbs. Another
common type of feature is the number of children of a particular word, possibly divided into left
children and right children.

3.3.2 TRAINING DATA
Once we have defined our feature representation, we want to learn to predict the correct transition
o(c), for any configuration c, given the feature representation f(c) as input. In machine learning
terms, this is a straightforward classification problem, where the instances to be classified are (feature
representations of) configurations, and the classes are the possible transitions (as defined by the
transition system). In a supervised setting, the training data should consist of instances labeled with
their correct class, which means that our training instances should have the form (f(c), t) (t = o(c)).
However, this is not the form in which training data are directly available to us in a treebank.

32 CHAPTER 3. TRANSITION-BASED PARSING

In section 2.2, we characterized a training set D for supervised dependency parsing as con-
sisting of sentences paired with their correct dependency trees:

D = {(Sd,Gd)}|D|d=0

In order to train a classifier for transition-based dependency parsing, we must therefore find a way to
derive from D a new training set D′, consisting of configurations paired with their correct transitions:

D′ = {(f(cd), td)}|D
′|

d=0

Here is how we construct D′ given D:

• For every instance (Sd,Gd) ∈ D, we first construct a transition sequence Cd0,m =
(c0, c1, . . . , cm) such that

1. c0 = c0(Sd),

2. Gd = (Vd,Acm).

• For every non-terminal configuration cdi ∈ Cd0,m, we then add to D′ an instance (f(cdi), t
d
i),

where tdi (c
d
i) = cdi+1.

This scheme presupposes that, for every sentence Sd with dependency tree Gd , we can construct
a transition sequence that results in Gd . Provided that all dependency trees are projective, we can
do this using the parsing algorithm defined in section 3.2 and relying on the dependency tree
Gd = (Vd,Ad) to compute the oracle function in line 3 as follows:

o(c = (σ, β,A)) =

⎧⎪⎪⎨
⎪⎪⎩

Left-Arcr if (β[0], r, σ [0]) ∈ Ad
Right-Arcr if (σ [0], r, β[0]) ∈ Ad and, for all w, r ′,

if (β[0], r ′, w) ∈ Ad then (β[0], r ′, w) ∈ A
Shiftr otherwise

The first case states that the correct transition is Left-Arcr if the correct dependency tree has an
arc from the first word β[0] in the input buffer to the word σ [0] on top of the stack with dependency
label r . The second case states that the correct transition is Right-Arcr if the correct dependency
tree has an arc from σ [0] to β[0] with dependency label r – but only if all the outgoing arcs from
β[0] (according to Gd) have already been added to A. The extra condition is needed because, after
the Right-Arcr transition, the word β[0] will no longer be in either the stack or the buffer, which
means that it will be impossible to add more arcs involving this word. No corresponding condition
is needed for the Left-Arcr case since this will be satisfied automatically as long as the correct
dependency tree is projective. The third and final case takes care of all remaining configurations,
where Shift has to be the correct transition, including the special case where the stack is empty.

3.3. CLASSIFIER-BASED PARSING 33

3.3.3 CLASSIFIERS
Training a classifier on the set D′ = {(f(cd), td)}|D

′|
d=0 is a standard problem in machine learning,

which can be solved using a variety of different learning algorithms. We will not go into the details
of how to do this but limit ourselves to some observations about two of the most popular methods
in transition-based dependency parsing: memory-based learning and support vector machines.

Memory-based learning and classification is a so-called lazy learning method, where learning
basically consists in storing the training instances while classification is based on similarity-based
reasoning (Daelemans and Van den Bosch, 2005). More precisely, classification is achieved by re-
trieving the k most similar instances from memory, given some similarity metric, and extrapolating
the class of a new instance from the classes of the retrieved instances. This is usually called k near-
est neighbor classification, which in the simplest case amounts to taking the majority class of the k
nearest neighbors although there are a number of different similarity metrics and weighting schemes
that can be used to improve performance. Memory-based learning is a purely discriminative learning
technique in the sense that it maps input instances to output classes without explicitly computing
a probability distribution over outputs or inputs (although it is possible to extract metrics that can
be used to estimate probabilities). One advantage of this approach is that it can handle categorical
features as well as numerical ones, which means that feature vectors for transition-based parsing can
be represented directly as shown in section 3.3.1 above, and that it handles multi-class classification
without special techniques. Memory-based classifiers are very efficient to train, since learning only
consists in storing the training instances for efficient retrieval. On the other hand, this means that
most of the computation must take place at classification time, which can make parsing inefficient,
especially with large training sets.

Support vector machines are max-margin linear classifiers, which means that they try to
separate the classes in the training data with the widest possible margin (Vapnik, 1995). They
are especially powerful in combination with kernel functions, which in essence can be used to
transform feature representations to higher dimensionality and thereby achieve both an implicit
feature combination and non-linear classification. For transition-based parsing, polynomial kernels
of degree 2 or higher are widely used, with the effect that pairs of features in the original feature space
are implicitly taken into account. Since support vector machines can only handle numerical features,
all categorical features need to be transformed into binary features.That is, a categorical feature with
m possible values is replaced with m features with possible values 0 and 1. The categorical feature
assuming its ith value is then equivalent to the ith binary feature having the value 1 while all other
features have the value 0. In addition, support vector machines only perform binary classification,
but there are several techniques for solving the multi-class case. Training can be computationally
intensive for support vector machines with polynomial kernels, so for large training sets special
techniques often must be used to speed up training. One commonly used technique is to divide the
training data into smaller bins based on the value of some (categorical) feature, such as the part of
speech of the word on top of the stack. Separate classifiers are trained for each bin, and only one
of them is invoked for a given configuration during parsing (depending on the value of the feature

34 CHAPTER 3. TRANSITION-BASED PARSING

Transition Preconditions

Left-Arcr (σ |wi,wj |β,A)⇒ (σ,wj |β,A∪{(wj , r, wi)}) (wk, r
′, wi) /∈ A

i �= 0

Right-Arcr (σ |wi,wj |β,A)⇒ (σ |wi |wj , β,A∪{(wi, r, wj)})
Reduce (σ |wi, β,A)⇒ (σ, β,A) (wk, r

′, wi) ∈ A
Shift (σ,wi |β,A)⇒ (σ |wi, β,A)

Figure 3.6: Transitions for arc-eager shift-reduce dependency parsing.

used to define the bins). Support vector machines with polynomial kernels currently represent the
state of the art in terms of accuracy for transition-based dependency parsing.

3.4 VARIETIES OF TRANSITION-BASED PARSING

So far,we have considered a single transition system,defined in section 3.1, and a single,deterministic
parsing algorithm, introduced in section 3.2. However, there are many possible variations on the basic
theme of transition-based parsing, obtained by varying the transition system, the parsing algorithm,
or both. In addition, there are many possible learning algorithms that can be used to train classifiers, a
topic that was touched upon in the previous section. In this section,we will introduce some alternative
transition systems (section 3.4.1) and some variations on the basic parsing algorithm (section 3.4.2).
Finally, we will discuss how non-projective dependency trees can be processed even if the underlying
transition system only derives projective dependency trees (section 3.5).

3.4.1 CHANGING THE TRANSITION SYSTEM
One of the peculiarities of the transition system defined earlier in this chapter is that right dependents
cannot be attached to their head until all their dependents have been attached. As a consequence,
there may be uncertainty about whether a Right-Arcr transition is appropriate, even if it is certain
that the first word in the input buffer should be a dependent of the word on top of the stack. This
problem is eliminated in the arc-eager version of this transition system, defined in figure 3.6. In this
system, which is called arc-eager because all arcs (whether pointing to the left or to the right) are
added as soon as possible, the Right-Arcr is redefined so that the dependent word wj is pushed
onto the stack (on top of its head wi), making it possible to add further dependents to this word. In
addition, we have to add a new transition Reduce, which makes it possible to pop the dependent
word from the stack at a later point in time, and which has as a precondition that the word on
the top of the stack already has a head, i.e., that the arc set contains an arc (wk, r ′, wi) for some k

3.4. VARIETIES OF TRANSITION-BASED PARSING 35

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root,Economic], [news, . . . , .], ∅)

LAatt⇒ ([root], [news, . . . , .], A1 = {(news,ATT,Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
RApred⇒ ([root, had], [little, . . . , .], A3 = A2! ∪{(root,PRED, had)})

SH⇒ ([root, had, little], [effect, . . . , .], A3)
LAatt⇒ ([root, had], [effect, . . . , .], A4 = A3∪{(effect,ATT, little)})
RAobj⇒ ([root, had, effect], [on, . . . , .], A5 = A4∪{(had,OBJ, effect)})
RAatt⇒ ([root, . . . on], [financial,markets, .], A6 = A5∪{(effect,ATT, on)})

SH⇒ ([root, . . . , financial], [markets, .], A6)
LAatt⇒ ([root, . . . on], [markets, .], A7 = A6∪{(markets,ATT, financial)})
RApc⇒ ([root, . . . ,markets], [.], A8 = A7∪{(on,PC,markets)})

RE⇒ ([root, . . . , on], [.], A8)
RE⇒ ([root, . . . , effect], [.], A8)
RE⇒ ([root, had], [.], A8)

RApu⇒ ([root, . . . , .], [], A9 = A8∪{(had,PU, .)})

Figure 3.7: Arc-eager transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr ,
RAr = Right-Arcr , RE = Reduce, SH = Shift).

and r ′ (where wi is the word on top of the stack).9 To further illustrate the difference between the
two systems, figure 3.7 shows the transition sequence needed to parse the sentence in figure 1.1 in
the arc-eager system (cf. figure 3.2). Despite the differences, however, both systems are sound and
complete with respect to the class of projective dependency trees (or forests that can be turned into
trees, to be exact), and both systems have linear time and space complexity when coupled with the
deterministic parsing algorithm formulated in section 3.2 (Nivre, 2008). As parsing models, the two
systems are therefore equivalent with respect to the � and h components but differ with respect to
the λ component, since the different transition sets give rise to different parameters that need to be
learned from data.

Another kind of variation on the basic transition system is to add transitions that will allow a
certain class of non-projective dependencies to be processed. Figure 3.8 shows two such transitions
called NP-Leftr and NP-Rightr , which behave exactly like the ordinary Left-Arcr and Right-
Arcr transitions, except that they apply to the second word from the top of the stack and treat the top
word as a context node that is unaffected by the transition. Unless this context node is later attached
to the head of the new arc, the resulting tree will be non-projective. Although this system cannot

9Moreover, we have to add a new precondition to the Left-Arcr transition to prevent that it applies when the word on top of
the stack already has a head, a situation that could never arise in the old system. The precondition rules out the existence of an
arc (wk, r ′, wi) in the arc set (for any k and r ′).

36 CHAPTER 3. TRANSITION-BASED PARSING

Transition Precondition

NP-Leftr (σ |wi |wk,wj |β,A)⇒ (σ |wk,wj |β,A∪{(wj , r, wi)}) i �= 0

NP-Rightr (σ |wi |wk,wj |β,A)⇒ (σ |wi,wk|β,A∪{(wi, r, wj)})

Figure 3.8: Added transitions for non-projective shift-reduce dependency parsing.

cope with arbitrary non-projective dependency trees, it can process many of the non-projective
constructions that occur in natural languages (Attardi, 2006).

In order to construct a transition system that can handle arbitrary non-projective dependency
trees, we can modify not only the set of transitions but also the set of configurations. For example, if
we define configurations with two stacks instead of one, we can give a transition-based account of
the algorithms for dependency parsing discussed by Covington (2001). With an appropriate choice
of transitions, we can then define a system that is sound and complete with respect to the class GS
of arbitrary dependency for a given sentence S. The space complexity for deterministic parsing with
an oracle remains O(n) but the time complexity is now O(n2). To describe this system here would
take us too far afield, so the interested reader is referred to Nivre (2008).

3.4.2 CHANGING THE PARSING ALGORITHM
The parsing algorithm described in section 3.2 performs a greedy,deterministic search for the optimal
transition sequence, exploring only a single transition sequence and terminating as soon as it reaches
a terminal configuration. Given one of the transition systems described so far, this happens after
a single left-to-right pass over the words of the input sentence. One alternative to this single-pass
strategy is to perform multiple passes over the input while still exploring only a single path through
the transition system in each pass. For example, given the transition system defined in section 3.1, we
can reinitialize the parser by refilling the buffer with the words that are on the stack in the terminal
configuration and keep iterating until there is only a single word on the stack or no new arcs were
added during the last iteration.This is essentially the algorithm proposed by Yamada and Matsumoto
(2003) and commonly referred to as Yamada’s algorithm. In the worst case, this may lead to n− 1
passes over the input, each pass takingO(n) time, which means that the total running time isO(n2),
although the worst case almost never occurs in practice.

Another variation on the basic parsing algorithm is to relax the assumption of determinism
and to explore more than one transition sequence in a single pass. The most straightforward way of
doing this is to use beam search, that is, to retain the k most promising partial transition sequences
after each transition step. This requires that we have a way of scoring and ranking all the possible
transitions out of a given configuration, which means that learning can no longer be reduced to a pure
classification problem. Moreover, we need a way of combining the scores for individual transitions

3.5. PSEUDO-PROJECTIVE PARSING 37

in such a way that we can compare transition sequences that may or may not be of the same length,
which is a non-trivial problem for transition-based dependency parsing. However, as long as the size
of the beam is bounded by a constant k, the worst-case running time is still O(n).

3.5 PSEUDO-PROJECTIVE PARSING
Most of the transition systems that are used for classifier-based dependency parsing are restricted to
projective dependency trees. This is a serious limitation given that linguistically adequate syntactic
representations sometimes require non-projective dependency trees. In this section, we will therefore
introduce a complementary technique that allows us to derive non-projective dependency trees even
if the underlying transition system is restricted to dependency trees that are strictly projective. This
technique, known as pseudo-projective parsing, consists of four essential steps:

1. Projectivize dependency trees in the training set while encoding information about necessary
transformations in augmented arc labels.

2. Train a projective parser on the transformed training set.

3. Parse new sentences using the projective parser.

4. Deprojectivize the output of the projective parser, using heuristic transformations guided by
augmented arc labels.

The first step relies on the fact that it is always possible to transform a non-projective dependency tree
into a projective tree by substituting each non-projective arc (wi, r, wj) by an arc (anc(wi), r ′, wj),
where anc(wi) is an ancestor of wi such that the new arc is projective. In a dependency tree, such
an ancestor must always exist since the root node will always satisfy this condition even if no other
node does.10 However, to make a minimal transformation of the non-projective tree, we generally
prefer to let anc(wi) be the nearest ancestor (from the original head wi) such that the new arc is
projective.

We will illustrate the projectivization transformation with respect to the non-projective depen-
dency tree in figure 2.1, repeated in the top half of figure 3.9. This tree contains two non-projective
arcs: hearing

att→ on and scheduled
tmp→ today. Hence, it can be projectivized by replacing these arcs

with arcs that attach both on and today to is, which in both cases is the head of the original head.
However, to indicate that these arcs do not belong to the true, non-projective dependency tree, we
modify the arc labels by concatenating them with the label going into the original head: sbj:att
and vc:tmp. Generally speaking, a label of the form head:dep signifies that the dependent has the
function dep and was originally attached to a head with function head. Projectivizing the tree with
this type of encoding gives the tree depicted in the bottom half of figure 3.9.

Given that we have projectivized all the dependency trees in the training set, we can train a
projective parser as usual.When this parser is used to parse new sentences, it will produce dependency

10I.e., for any arc (w0, r, wj) in a dependency tree, it must be true that w0 →∗ wk for all 0 < k < j .

38 CHAPTER 3. TRANSITION-BASED PARSING

Figure 3.9: Projectivization of a non-projective dependency tree.

trees that are strictly projective as far as the tree structure is concerned, but where arcs that need to be
replaced in order to recover the correct non-projective tree are labeled with the special, augmented arc
labels. These trees, which are said to be pseudo-projective, can then be transformed into the desired
output trees by replacing every arc of the form (wi,head:dep, wj) by an arc (desc(wi),dep, wj),
where desc(wi) is a descendant of wi with an ingoing arc labeled head. The search for desc(wi)
can be made more or less sophisticated, but a simple left-to-right, breadth-first search starting from
wi is usually sufficient to correctly recover more than 90% of all non-projective dependencies found
in natural language (Nivre and Nilsson, 2005).

The main advantage of the pseudo-projective technique is that it in principle allows us to
parse sentences with arbitrary non-projective dependency trees in linear time, provided that projec-
tivization and deprojectivization can also be performed in linear time. Moreover, as long as the base
parser is guaranteed to output a dependency tree (or a dependency forest that can be automatically
transformed into a tree), the combined system is sound with respect to the class GS of non-projective
dependency trees for a given sentence S. However, one drawback of this technique is that it leads
to an increase in the number of distinct dependency labels, which may have a negative impact on
efficiency both in training and in parsing (Nivre, 2008).

3.6 SUMMARY AND FURTHER READING

In this chapter, we have shown how parsing can be performed as greedy search through a transition
system, guided by treebank-induced classifiers.The basic idea underlying this approach can be traced
back to the 1980s but was first applied to data-driven dependency parsing by Kudo and Matsumoto
(2002), who proposed a system for parsing Japanese, where all dependencies are head-final. The ap-
proach was generalized to allow mixed headedness by Yamada and Matsumoto (2003), who applied

3.6. SUMMARY AND FURTHER READING 39

it to English with state-of-the-art results. The latter system essentially uses the transition system
defined in section 3.1, together with an iterative parsing algorithm as described in section 3.4.2, and
classifiers trained using support vector machines.

The arc-eager version of the transition system, described in section 3.4.1, was devel-
oped independently by Nivre (2003) and used to parse Swedish (Nivre et al., 2004) and En-
glish (Nivre and Scholz, 2004) in linear time using the deterministic, single-pass algorithm for-
mulated in section 3.2. An in-depth description of this system, sometimes referred to as Nivre’s
algorithm, can be found in Nivre (2006b) and a large-scale evaluation, using data from ten different
languages, in Nivre et al. (2007). Early versions of this system used memory-based learning but more
accurate parsing has later been achieved using support vector machines (Nivre et al., 2006).

A transition system that can handle restricted forms of non-projectivity while preserving the
linear time complexity of deterministic parsing was first proposed by Attardi (2006), who extended
the system of Yamada and Matsumoto and combined it with several different machine learning
algorithms including memory-based learning and logistic regression. The pseudo-projective pars-
ing technique was first described by Nivre and Nilsson (2005) but is inspired by earlier work in
grammar-based parsing by Kahane et al. (1998). Systems that can handle arbitrary non-projective
trees, inspired by the algorithms originally described by Covington (2001), have recently been ex-
plored by Nivre (2006a, 2007).

Transition-based parsing using different forms of beam search, rather than purely determin-
istic parsing, has been investigated by Johansson and Nugues (2006, 2007b), Titov and Henderson
(2007a,b), and Duan et al. (2007), among others, while Cheng et al. (2005) and Hall et al. (2006)
have compared the performance of different machine learning algorithms for transition-based pars-
ing. A general framework for the analysis of transition-based dependency-based parsing, with proofs
of soundness, completeness and complexity for several of the systems treated in this chapter (as well
as experimental results) can be found in Nivre (2008).

