
Words

LING83600: Language Technology



Outline

● The word
● Word frequency distributions
● Comparing word frequencies



The word



What’s a word (Packard 2000; 1/)

● The orthographic word: sequences of characters separated by conventionalized 
delimiters (like whitespace)

● The sociological (or naïve) word:

Chao (1968:136):

...that type of unit intermediate in size between a phoneme and a sentence, 
which the general non-linguistic public is conscious of, talks about, has an 
everyday term for, and is practically concerned with in various ways.

(In English this is roughly the whitespace-delimited word; in Chinese, the character.)



What’s a word (Packard 2000; 2/)

● The phonological (or prosodic) word: the minimal abstract sequence of sounds 
(phones and phonemes) “standing alone” as opposed to leaning on other words

● The syntactic (or grammatical) word: the minimal phrasal unit; a head, an X0

● The lexicographic (or lexical) word: whatever units are used as “headwords” or 
citation forms in dictionaries

These notions often overlap but are not identical.



Tokenization (1/)

Consider the following sentence (from the Wall St. Journal):

Rolls-Royce Motor Cars Inc. said it expects its U.S. sales to remain steady at 
about 1,200 cars in 1990.

Is Rolls-Royce one word or two? How about 1,200? How about 1990.?

This is also language-dependent. It is close to deterministic in English, so we use a 
series of regular expressions to split tokens.



Tokenization (2/)

One convention for English is the Penn Treebank tokenizer rules, which produce:

['Rolls-Royce', 'Motor', 'Cars', 'Inc.', 'said', 'it', 
'expects', 'its', 'U.S.', 'sales', 'to', 'remain', 'steady', 
'at', 'about', '1,200', 'cars', 'in', '1990', '.']

● Hyphenated compounds like Rolls-Royce are treated as a single token, and
● sentential punctuation like commas and periods are treated as single tokens,
● but, punctuation inside other tokens are not treated as separate tokens.



Tokens

Tools like the Penn Treebank tokenizer tend to privilege the syntactic word at the 
cost of other notions of wordhood.

E.g., clitics are treated as separate words.

[The] [queen]['s] [favorite] [corgi] [barked] [at] [the] [Prime] [Minister][.]



Clitics

Clitics are syntactically word-like, but phonologically dependent: they must "lean" on 
another word.

An important diagnostic for clitichood (vs. affixhood) is promiscuous attachment 
(Zwicky & Pullum 1983): the "host" does not need to be of a particular category, it 
merely needs to a phonological word belonging to the appropriate phrase.



English possessive 's

The English possessive leans on the right edge of possessor noun phrase:

[Peter]'s mother (cf. German Peters Mutter)
[The Queen of England]'s corgis (cf. *die Königin von Englands corgis)
[The zombie movie we all hated]'s director
[The woman I saw yesterday in the park next to the Pleurotus ostreatus-infested
oak tree]’s new hat

Because virtually any word can be the host of an ‘s proclitic, it makes sense to treat it 
as a separate token. The tokenizer sacrifices the naïve (or sociological) notion of 
wordhood in favor of syntactic wordhood (an X0, a head).



Challenging languages

Word segmentation is non-trivial in nearly all languages, but it is far more challenging 
in scripts—e.g., Chinese, Japanese, and Thai—which do not reliably mark word 
boundaries with space, or in Vietnamese, where whitespace is an unreliable cue to 
word boundaries.

For these languages, machine learning is usually necessary. One good option is 
UDPipe and their collection of models for 60 languages.

(Most of the scripts of Europe and the Near East were written like this until the late 
medieval/early modern era, too.)

http://ufal.mff.cuni.cz/udpipe
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2998


Chinese Treebank 9.0

以组建在国内外具有实力影响的大公司、大集团为目标进行的资本结构优化，正在给青

岛经济带来新的活力。

近两年来，青岛这个中国沿海十四个开放城市之一的城市，在资金及政策上重点支持了

五十个名牌产品和五十个重点企业，集中力量发展了电子、机械、石化、橡胶、家电和饮

料六大支柱产业。

目前，青岛的资本运营形式已呈兼并、联合、参股、控股、收购等多元化态势。

在市场的引导下，一批实力强劲的企业迅速组建大集团。



Thai Wikipedia

ธงไชย แมคอินไตย ชื่อเลน เบิรด (เกิด 8 ธันวาคม พ.ศ. 2501) เปนนักรอง นักแสดงชาวไทย ได
รับขนานนามวาเปน "ซูเปอรสตารเมืองไทย" แรกเขาวงการบันเทิงเปนนักแสดงสมทบ ตอมาได
รับบทพระเอก โดยภาพยนตรที่สรางชื่อเสียงใหกับเขาที่สุดเรื่อง ดวยรักคือรัก สวนละครที่สราง
ชื่อเสียงที่สุดของเขาคือบท "โกโบริ" ในละครคูกรรม ดานวงการเพลงซึ่งเปนอาชีพหลักเขาเริ่ม
ตนจากการประกวดรองเพลงของสยามกลการ ตอมาเปนนักรองในสังกัดบริษัท จีเอ็มเอ็ม แกรมมี่ 
จํากัด (มหาชน) ซึ่งประสบความสําเร็จสูงสุดของประเทศไทย มียอดจําหนายอยูในระดับ
แนวหนาของทวีปเอเชียยอดรวมกวา 25 ลานชุด



Vietnamese Wikipedia

Thần thoại Hy Lạp là tập hợp những huyền thoại và truyền thuyết của người Hy Lạp 
cổ đại liên quan đến các vị thần, các anh hùng, bản chất của thế giới, và nguồn gốc 
cũng như ý nghĩa của các tín ngưỡng, nghi lễ tôn giáo của họ. Chúng là một phần của 
tôn giáo Hy Lạp cổ đại và nay là một phần của một tôn giáo hiện đại lưu hành ở Hy 
Lạp và trên thế giới gọi là Hellenismos. Các học giả hiện đại tham khảo và nghiên 
cứu các truyện thần thoại này để rọi sáng vào các thể chế tôn giáo, chính trị Hy Lạp 
cổ đại, nền văn minh của nó cũng như để tìm hiểu về bản thân sự hình thành huyền 
thoại.



[Linear A tablet, Zakros, Crete, 1450 BCE.
Image credit: The Antiquated Antiquarian.]



[Latin bronze diploma, Naples, 113/4 C.E. 
Image credit: the Metropolitan Museum of Art]



Word frequency 
distributions



Large numbers of rare events

Word frequency distributions are very sparse. They are not governed by the law of 
large numbers and therefore cannot be understood in terms of normal statistics.

Instead they are governed by a separate set of statistical laws, those for large 
numbers of rare events (LNRE).



Today’s corpus

2009 English newscrawl data from statmt.org, case-folded and tokenized using 
the Penn Treebank tokenizer.

● 14.7m sentences
● 347m tokens
● 1.49m types

Most frequent tokens: the , . to of and a in that

http://data.statmt.org/news-crawl/README


Vocabulary growth rate



Hapax legomena

As with all LNRE random variables, word frequency exhibits “few giants” and “many 
dwarves”.

Among them are the 786k hapax legomena (sg. hapax legomenon), tokens that only 
occur once.

In other words, for every 450 or so tokens we see a new token.

It is hard to distinguish between structural and accidental zeros.



Zipf’s Law: definition

Word frequency r is proportional to the inverse of word rank R. Or:

r(C, α) = C / Rα

where C is a constant sensitive to sample size and α is ≈ −1.

These can be estimated from the linear regression formula:

log r ∼ log C + α log R + ε

where ε is the error term.



Frequency-of-frequency representation (Good 1953)

For many purposes it is easier to think in terms of frequencies of frequencies, so that 
nr is the number of types of frequency r.



Zipf’s Law (nr)



Zr transform (Gale & Sampson 1995)

Noting that the “tail” of the preceding graph is dominated by high-frequency items 
with small nr, propose to smooth it out by averaging using neighbors:

Zi = 2 ni / (ri + 1 − ri - 1)

and the edge cases:

Z1 = n1 / (r2 − r1)
ZN = nN / (rN − rN - 1)

For small r, the denominator will equal 2 on the left; for high r, it will be large and help 
to smooth.



Zipf’s Law (Zr)

α = −1.589, R2 = .9381 



LNRE calculator

Given a TSV file in which the first column are token and the second column are 
integral counts of those tokens, my LNRE calculator computes some basic statistics 
and graphs the "Zipf curve". 

Some reference frequency distributions are provided here.

https://gist.github.com/kylebgorman/445f0143f43c1751f824af7140c1df04
https://github.com/CUNY-CL/FrequencyDistributions






Zipf’s Law: Spanish verb paradigms (Chan 2008)



Comparing word 
frequencies



Sample corpora

Baseline corpus (to be defined): 2009 English newscrawl data from statmt.org (346m 
tokens)

Corpus 1: Yahoo! Horoscopes (1.8m tokens)

Corpus 2: King James Version (1.1m tokens)

http://data.statmt.org/news-crawl/README


Example

Words present in horoscopes but not news: snugglebug, wingperson, lovewise, 
sugarpie, nutsy, heartspace, patootie, you-time, overexplain, ...

Words present in news but not horoscopes: Obama, billion, minister, London, 
administration, ...

Words present in the KJV but not news: calleth, transgressings, deliveredst, 
everlastingness, soothsayings, whorish, foresaken, …



From frequencies to probabilities

We can convert a word frequency c(w) to a probability using maximum likelihood 
estimation:

p(w) = c(w) / N

where N is the total number of tokens in the corpus.



Probability differences

We could use raw probability deltas (e.g., p1 − p2) for comparison. This has range [−1, 
1]. However:

● Maybe p's are (accidental?) zeros.
● High-frequency words will have the most extreme values, e.g.:

○ Words most associated with horoscopes: you, your, to, a, it, ...
○ Words most associated with the KJV: shall, he, of, and, the, ...



From probabilities to odds

The odds of a probability p is simply:

O = p / (1 − p)

This has the range [0, +∞].

For instance, for p = .9, O = 9, and for p = .1, O = 0.1111.



From odds to log-odds

Because of the strange range…

e.g., p < .5 implies 0 < O < 1, whereas p > .5 implies 1 < O < ∞,

it is often preferable to work in log-space, where the range is [−∞, +∞].

log O = log p − log(1 − p)
= log c − log(N − c)

For instance, for p = .9, log(O) = 2.197, and for p = .1, log(O) = −2.197.



From log-odds to log-odds ratios (1/)

To compare two probabilities, we can compute their log-odds ratio, defined as the 
difference between two log odds. This preserves the [−∞, +∞] range.

For example, for the probabilities .9 (log O = 2.197) and .4 (log O = −.405) the 
log-odds ratio is 2.602.



From log-odds to log-odds ratios (2/)

Let c1(w), c2(w) be the frequencies of some word w in corpus 1 and corpus 2, 
respectively.

Let N1, N2 be the total number of tokens in corpus 1 and corpus 2, respectively. Then:

log Oi(w) = log[ ci(w) / (Ni − ci(w)) ] 

= log[ ci(w) ] − log[ Ni − ci(w) ]

δi,j(w) = log Oi(w) − log Oj(w)



From log-odds to log-odds ratios (3/)

Problems:

● Log-odds (and therefore their ratios) are undefined when counts are zero.
● High-frequency words still have the most extreme values, e.g.:

○ Words most associated with horoscopes: around, comes, everyone, attention, usual, ...
○ Words most associated with the KJV: thee, Father, ye, unto, Lord, ...





From log-odds ratios to informative Dirichlet priors (1/)

We can use a large "background" corpus as a prior, an estimate of expected word 
frequencies.

We do this by adding the background corpus counts to both the numerator and 
denominator, "shrinking" the probabilities/odds towards the prior probabilities/odds.



From log-odds ratios to informative Dirichlet priors (2/)

Let c1(w), c2(w), c3(w) be the frequencies of some word w in corpora 1-3, respectively.

Let N1, N2, N3, be the total number of tokens in corpora 1-3, respectively. Then:

log Oi,k(w) = log[ (ci(w) + ck(w)) / (Ni + Nk− ci(w) − ck(w)) ]

= log[ ci(w) + ck(w)] − log[ Ni + Nk− ci(w) − ck(w) ]

δi,j,k(w)  = log Oi,k(w) − log Oj,k(w)

NB: this is defined even if c1(w) or c2(w) = 0, so long as c3(w) > 0.



From log-odds ratios to informative Dirichlet priors (3/)

● Words associated with horoscopes: you, new, feel, love, time...
● Words associated with the KJV: behold, king, God, Lord, children...



From log-odds ratios to informative Dirichlet priors (4/)

Finally, we can scale the log-odds ratios to take their variance into account.

The sample variance for word w is given by:

 σ2
i,j,k(w) = 1 / [ ci(w) + Nk ] + 1 / [ cj(w) + Nk ]

Then a z-scored version of the log-odds ratio is given by:

zi,j,k(w) = δi,j,k / sqrt[ σ2
i,j,k(w) ]



From log-odds ratios to informative Dirichlet priors (5/)

● Words associated with horoscopes: you, her, about, people, year, ...
● Words associated with the KJV: unmerciful, greediness, defile, glutton, gnash, ...



Implementations

It's relatively easy to implement the Fightin' Words method yourself:

● sentence-split, tokenize, and (optionally) case-fold your data, then
● use collections.Counter objects to collect the raw counts,
● then use math.log and basic arithmetic take care of the rest.

I have a simple Cython-based implementation available here.

Cornell's ConvoKit also has an implementation (not yet tested).

https://gist.github.com/kylebgorman/0cc8f42f870b8b1a07147ddf0fb44022
https://convokit.cornell.edu/documentation/index.html
https://convokit.cornell.edu/documentation/examples.html#fighting-words


Questions?



For next week

● Read Jurafsky & Martin (draft 3rd edition) section 20.5.1, which describes the 
Fightin' Words method.
○ Feel free to browse the whole chapter: it's interesting.

● Make sure your Conda installation is in good working order:
○ If your Conda is ancient or malfunctioning, just delete it and start over.
○ Make sure python is an alias to Python 3.8. (Try python --version to confirm.)

https://web.stanford.edu/~jurafsky/slp3/20.pdf
https://web.stanford.edu/~jurafsky/slp3/20.pdf
https://docs.conda.io/en/latest/

