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Machine learning systems used in speech and language processing
employ linguistic units like words, phonemes, n-grams, etc., as
multinomial features. Each multinomial feature with k levels can then
one-hot encoded as a binary vector of length k − 1. For example, a
multinomial variable ranging over {dc, lower,mixed, title, upper}. can be
exactly encoded using {0, 1}4:

dc → [0, 0, 0, 0]
lower → [1, 0, 0, 0]
mixed → [0, 1, 0, 0]
title → [0, 0, 1, 0]

upper → [0, 0, 0, 1]
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An embedding is a function which map words (etc.) onto vectors of real
numbers. That is, an embedding is a function V ×Òk where V is the
vocabulary and k is a hyperparameter. These real number vectors are an
alternative to the sparse boolean vectors produced by one-hot encoding.
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One can imagine an in�nitude of embedding functions, including random
embeddings that (deterministically) assign real vectors to each word
(etc.). For an embedding to be useful—i.e., superior to a one-hot
embedding—it needs to cluster words with similar linguistic
behaviors/properties together.
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The idea has been around for several decades but has become a very
important component of neural network approaches to language
processing. More generally, the subarea that studies how neural networks
induce representations of linguistic data is sometimes called
representation learning, and is the subject of two regularly-scheduled
ACL workshops,

• the Workshop on Representation Learning for NLP (RepL4NLP) and
• Analyzing and interpreting neural networks for NLP (BlackboxNLP).
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Introductory notions
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The distributional hypothesis

The idea that we can understand words (or sentences, or documents) by
analyzing co-occurrence statistics is sometimes known as the
distributional hypothesis. Two obligatory quotes:

In other words, di�erence in meaning correlates with di�erence
in distribution. (Harris 1954:43)

You shall know a word by the company it keeps. (Firth 1957:11)

But exactly what form should these representations take? And how
should they be induced?
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The bag of words model

One common—and unexpectedly e�ective—technique used to represent
sentences or documents is the bag of words (BOW) representation. This
can be as simple as counting all the words in a document.

>>> import collections
>>> bag = collections.Counter(tokens)
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Text preparation

Before counting tokens in this fashion, one may wish to

• tokenize into sentences and tokens,
• remove stop-words,
• lemmatize or stem, and
• case-fold (though see Church 1995).

When working with a large collection of documents, one may also wish to

• deduplicate the document collection,
• exclude very long and very short documents, and
• exclude documents containing unexpected characters.
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Term-document and word
co-occurrence analysis
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Term-document matrix example (after J&M, §6.3)

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

In-memory, we prefer a sparse representation:

{"As You Like It": [(1, 1), (2, 114), (3, 36), ...], ...}
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From term-document matrices to vectors
We can think of
• the column vector [1, 114, 36, 20] as a 4d “representation” of the
document As You Like It, and
• the row vector [36, 58, 1, 4] as a 4d “representation” of the token
food.

Figure: The words battle and fool in four works of Shakespeare (after J&M, §6.3).
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Term weighting: motivations

Raw token frequencies are often less informative than we’d like, because

• ubiquitous words tend to carry little information (particularly
function words), and
• words that occur in many documents tend to bear less information
than words that occur in few documents.

E.g., as Church (2000) notes, not many documents mention Noriega, but
those that do are in some sense “about” Noriega.
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Term frequency

Term frequency, denoted tft,d, is the number of times a token t occurs in
document d. It is often computed in log-space as

log tft,d = log(cd(t) + 1)

or

log tft,d =

{
1 + log cd(t) if cd(t) > 0
0

.
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Document frequency

Document frequency, denoted dft, is the number of documents a token t
occurs in. Inverse document frequency, idft, is this quantity scaled by the
number of documents N. This is also often computed in log-space, as

log idft = log(
N
dft
)

= log N − log dft
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TF-IDF weighting

These statistics are often combined for a given term to give term
frequency-inverse document frequency (TF-IDF):

tdidft,d = log tft,d + log idft

Using this instead of the raw frequencies tends to give more informative
representations of a term’s a�liation for a document.
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TF-IDF term-document matrix example

As You Like It Twelfth Night Julius Caesar Henry V
battle .07 .00 .22 .28
good .00 .00 .00 .00
fool .02 .02 .00 .01
wit .05 .04 .02 .02
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Word co-occurrence matrix example (after J&M, §6.3)

aardvark computer data result
cherry 0 2 8 9
strawberry 0 0 0 1
digital 0 1,679 1,683 85
information 0 3,325 3,982 378

Two minor implementational challenges here are

• to avoid counting (wi,wj) and (wj,wi) separately, and
• to avoid counting (wi,wi).
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Pointwise mutual information: motivations

Raw co-occurrence frequencies are often less informative than we’d like,
because ubiquitous, low-information words tend to co-occur with each
other. We’d rather ask whether a word is particularly associated with
another word.
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Pointwise mutual information: de�nitions

Pointwise mutual information (Church and Hanks 1990)
PMI(wi,wj) : W × W → Ò is given by

PMI(wi,wj) = log
P(wi,wj)
P(wi)P(wj)

= log P(wi,wj) − log P(wi) − log P(wj).
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Positive pointwise mutual information

PMI has the range (−∞,∞), but negative values are somewhat strange:
they indicate that two words occur less often than we might expect by
chance. In positive pointwise mutual information (PPMI), we simply
replace negative PMI values with 0, thus

PPMI(wi,wj) = max(PMI(wi,wj), 0)
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PPMI examples (after J&M, §6.3)

computer data pinch sugar
apricot 2.25 2.25
pineapple 2.25 2.25
digital 1.66
information 0.57
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