
Reading guide for Eistenstein (2019) ch. 2

LING83600

In ch. 2 Eistenstein describes—multinomial, unstructured, linear (non-neural)—classification
algorithms commonly used in NLP, framing it as linear text classification, i.e., using bag-of-words
features to classify a document.

2.1 Bag of Words
Eistenstein assumes that each text is represented by using a column vector of term counts (though
one could easily use TF-IDF instead). Hewrites an example vector x = [0, 1, 1, 0, 0, 2, 0, 1, 13, 0, . . .]⊤;
here the bold indicates that x is a vector rather than a scalar, and ⊤ is used to indicate that each
document is represented as a column rather than a row vector.

Inmultinomial text classificationwe predict a label ŷ ∈ Y given a bag of words x using weights
θ ∈ RVK where K = |Y| and V is the size of the vocabulary. We do this using a scoring function
Ψ(x, y) for each y ∈ Y . The value of this scoring function, a real number, is a measure of the
compatibility of the bag of words xwith the label y. In a linear classifier, Ψ is defined by the inner
product (i.e., the sum of products) of weights and a feature function f(x, y)

Ψ(x, y) = θ · f(x, y) =
∑
j

θ jfj(x, y).

Then, to predict, we use

argmax
y∈Y

Ψ(x, y);

that is, we select the label ŷ ∈ Y that gives the highest score. One could precompute θ using
some prior information, but normally we use labeled data and optimization methods.

2.2 Naïve Bayes
Let the training set be {x(i), y(i))}Ni=1 where N is the number of examples. In naïve Bayes model,
we naïvely assume that each example is independent. Then, the joint probability of the training
set is given by

p(x, y) =
N∏
i=1

p(x(i), y(i)).

To use the model for prediction, we have to define p and provide a decision rule for making a
prediction using p. We assume that p is defined by two sets of parameters θ = {μ, φ} such that
μ ∈ [0, 1]K and φ ∈ [0, 1]K×V. The estimates for these are given below.

2.2.1 Types and Tokens
Thus subsection describes a simple modification which naïvely assumes that each (word) count
in x is independent of the others.

2.2.2 Prediction
It is relatively straightforward to use the joint probability distribution for classification. First, we
can set θ usingmaximum likelihood estimation simply by counting the co-occurrences of x and y.
Then, we can choose a label that maximizes the joint probability

ŷ = argmax
y∈Y

p(x, y; θ)

= argmax
y∈Y

(log p(x, y; φ) + log p(y; μ))

(By performing the computations in log-space we avoid the risk of numerical underflow.)

2.2.3 Estimation
We use maximum likelihood estimation to compute the parameters of this model, as follows:

φy,j =
cy,j∑V
j′=1 cy,j′

μy =
cy
N
.

2.2.4 Smoothing
With text data, there is likely to be pairs of labels and words that never appear in the
training set… (Eistenstein 2019:22)

This is a problem because the naïve Bayes formulation will assign zero probability to any labels.
To avoid this, we often augment the counts φy,j with a so-called pseudocount hyperparameter
α ∈ R+, giving

φy,j =
α + cv,j

Vα +
∑V

j=1 cy,j
where V is the number of features and cy,j is the observed count of the (y, j) label/feature pair.
This technique introduces bias—it moves our predictions away from the optimal ones obtained
with maximum likelihood estimation—but reduces variance.

2.2.5 Setting Hyperparameters
This subsection describes how one might go about setting model hyperparameters—like α—in an
unbiased fashion.

2.3 Discriminative Learning
Naïve Bayes is an instance of a generative model; it estimating the joint probability of labels and
features p(x, y) and as such requires us to model the probability of the (features of) the text x. In
contrast discriminative models directly focus on predicting ŷ.

2.3.1 Perceptron
The perceptron is a simple, online, discriminative learning method for linear classifiers. The
perceptron learning algorithm is guaranteed to converge in a finite number of iterations when
the data is linearly separable. Weights are initialized as zeros. During training, one iterates
over examples—often in a random order created by shuffling them—and then computes ŷ =
argmaxy∈Y θ(t−1) · f(x(i), y) (algorithm 3, line 7). if ŷ = y(i); i.e., if this is the correct label, then the
weights are unchanged (line 11). However, if not, we set them to θ(t−1) + f(x(i), y(i)) − f(x(i), ŷ).
This essentially increases the score of the correct label and decreases that of the incorrect label.

2.3.2 Averaged Perceptron
To achieve faster convergence—and to prevent problems in the case that the data is not linearly
separable—one can average theweights across time, giving rise to the averaged perceptron. During
training, we use the unaveraged weights, but use the averaged weights for inference afterwards.

2.4 Loss Functions and Large-Margin Classification
This section introduces the notion of loss, a data-specific measurement of classification perfor-
mance. When there is no closed form solution to an optimization problem, as is the case for
perceptrons, we can proceed by minimizing the loss.

2.4.1 Online Large-Margin Classification
Large-margin classificationmethods attempt to not merely classify each example correctly, but do
so with a substantial wiggle room. Recall that the score for a correct label is given by θ ·f(x(i), y(i)),
and let the score of the highest-scoring incorrect label bemaxy ̸=y(i) θ · f(x(i), y). Then, themargin
is defined as the difference of the two, is defined as

γ(θ; x(i), y(i)) = θ · f(x(i), y(i))− max
y ̸=y(i)

θ · f(x(i), y)

The intuition here is that when the margin is large (and positive), the correct answer is separated
from the next-closest incorrect answer by a large factor. The online support vector machine (or
SVM) is an example of a linear classifier which attempts to maximize the margin.

2.4.2 Derivation of the Online Support Vector Machine
This subsection derives an online method for SVMs; the method described requires us to specify
a hyperparameter C ∈ R+ controlling the bias-variance tradeoff.

2.5 Logistic Regression
Logistic regression is another discriminative learning method that, unlike SVMs, allow for a prob-
abilistic interpretation, because it estimates the conditional probability pY|X.

2.5.1 Regularization
Regularization techniques are used to improve model generalization (i.e., to avoid overfitting)
of a machine learning model. Normally such methods are implementing by adding a (scalar)
regularization penalty to the loss, a value derived by some function to θ. L2 regularization, called
because the scalar penalty is given by λ

2∥θ∥
2
2 = λ

2

∑
i θ

2
i where λ ∈ (0, 1) is a hyperparameter.

One other commonmethods, discussed briefly in §2.7.1, are L1 regularization, which uses λ
2∥θ∥

2
1 =

λ
2

∑
i θ i. While Eistenstein does not discuss it, one can use L1 and L2 regularization simultaneously,

a method known as elastic net regularization.

2.5.2 Gradients
This subsection derives the gradient for logistic regression. The formula is defined by the ex-
pected feature counts under the present module minus the observed feature counts (cf. Eisten-
stein’s eq. 2.65.):

EY|X[f(x(i), y)]− f(x(i), y)

2.6 Optimization
Each one of the models discussed so far corresponds to an optimization problem in which the
goal is to find parameters θ which minimize or maximize the value of some function of θ. In
Naïve Bayes, for instance, we maximize the joint likelihood of features x and observations y:

log p(x(1:N), y(1:N))

For this, there is a closed-form solution, namely maximum likelihood estimation. For SVMs, we
minimize the margin (with optional regularization). For logistic regression, we minimize the
negative log-likelihood (with optional regularization). For the latter two, there is no closed-form
solution (e.g., we can’t just count some properties in the training data), but the objective is convex,
allowing us to use generic convex optimization routines.

2.6.1 Batch Optimization
Batch optimization describes optimization methods that process the entire training set at once;
naturally such methods are only feasible when the training set fits into available memory. Let
θ(t) be the weights at time t, Let η(t) ∈ R+ (eta) be the learning rate at time t, and let ∇θL be the
gradient of the loss function computed over the entire training set. Then,

θ(t+1) → θ(t) − η(t)∇θL.

Note that η is conditioned on time t becausewe often gradually reduce the learning rate as training
proceeds; this is required for provable convergence when objective is convex.

2.6.2 Online Optimization
In online optimization updates to the parameters are made using subsamples of the training data,
possibly as small as a single example, as in classic perceptron and stochastic gradient descent
learning, but more often aminibatch consisting of dozens or hundreds of examples. This requires
an algorithm for constructing (i.e., sampling) batches, but otherwise can proceed as above, using
each minibatch to compute∇θL. Online optimization often gives rise to lazy updating strategies.

2.7 Additional Topics in Classification

2.7.1 Feature Selection by Regularization
L1 regularization, which penalizes non-zero weights according to their magnitude, can be used
for feature selection. In all the models discussed above, if a features’s weight is zero, it can be
safely omitted from subsequent computations. In contrast, L2 regularization is much less likely
to induce model sparsity.

2.7.2 Other Views of Logistic Regression
There are two other ways to understand logistic regression:

• an instance of a generalized linear model, such as those used for statistical inference

• a maximum entropy (or maxent) model.

2.8 Summary of Learning Algorithms
Four general methods have been described:

• Naïve Bayes: probabilistic, implementation is easy, but performance is poor with corre-
lated features.

• Perceptron: implementation is easy, but non-probabilistic.

• Support vector machine: error/margin-driven approach gives best general results, but
requires a black-box optimization procedure and non-probabilistic.

• Logistic regression: probabilistic, but requires a black-box optimization procedure.

From my perspective, naïve Bayes is no longer appropriate except as a pedagogical tool; the
perceptron is great for huge problems with massive numbers of sparse features. For everything
else, use SVMs—Kummerfeld et al. (2015), for example, find large-margin methods outperform
logistic regression in a wide variety of NLP tasks—unless a probabilistic interpretation is required.
Tools like Scikit-learn make it very easy to try multiple methods with minimal fuss.

References
Eistenstein, Jacob. 2019. Introduction to Natural Language Processing. MIT Press.
Kummerfeld, Jonathan K., Taylor Berg-Kirkpatrick, and Dan Klein. 2015. An empirical analysis of

optimization for max-margin NLP. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 273–279.

