Reading guide for Eisenstein (2019) ch. 3 and Goldberg
(2017) ch. 3-5
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1 Introduction

Eisenstein (2019: 47) observes that simple linear classifiers are shockingly effective for many
problems—possibly because words are inherently meaningful even in isolation, making them
powerful features on their own, and there are often more unique words than we know what
to do with—but that non-linear methods (of which neural networks are the prime example) are
increasingly successful. This is thanks to

+ advances in deep learning,
« their ability to leverage embeddings, and
« their ability to leverage custom hardware in the form of graphics processing units (GPUs).

Improvements in optimization, and corporate-fueled momentum, play an important role in the
ongoing neural network revolution.

Goldberg (2017: 37f.) notes that the “hypothesis class of linear (and log-linear) models is
severely restricted”, in the sense that many functions one may want to predict are non-linear.
One famous example, due to Marvin Minsky, is the so-called xor (“exclusive or”) function:

For this, there is no set of linear weights R? and bias b € R such that the score of (0,0) and
(1,1) are < 0 but the scores of (1,0) and (0,1) are > 0. Alternatively, one can plot the four
points and confirm that one cannot separate the 0s and 1s with a line. However, it is possible to
transform the inputs so that the data is linearly separable. Goldberg suggests the transformation
@(x1, x;) = [x1%2, X1 + x]; this is illustrated in Figure 1.

Kernel methods, often used with support vector machines, are a well-studied approach for non-
linear classification in which the experimenter provides a non-linear transformation function—
e.g., the polynomial mapping ¢(x) = (x)? where d € N is as hyperparameter—which is applied
using the kernel trick.



XOR Projection
1.00
0.75 1
0.50 1
0.25 1
0.00 1 o

T T T T T T T T

T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Figure 1: The XOR problem, and a non-linear projection (after Goldberg: 37-38).

2 Motivations

Neural network classifiers offer an alternative in which the non-linearity is itself trainable. Eisen-
stein motivates this imagining that we have a set of raw observations x, features extracted from
those observations z, and labels y € ). Given this, one could construct a “two-step” classifier as
follows:

1. Use one logistic classifier to predict z according to p(z | x).

2. Use a second logistic classifier to predict y according to p(y | z).

If we assume that each feature is binary, the first step can be written

plze=1]x6%79) = 0(0,(:(_”) - X)
where o is the sigmoid function
1
exp(—x)

We form %2 by concatenating (i.e., stack) the weight vectors for each z; to form Given a set of
labels )V, the probability for a given label y € ) is given by

o(x) =

exp(8°7 - 2+ b))

ey exp(0 - 24 by)

py=7j|z0" b) = (1)

where b; is a bias term for label j € ), and 0= is once again formed by concatenation. The

vector of probabilities over each possible value of y, the softmax, is denoted by

p(y| z 6%7Y b) = softmax (0" 7Yz + b)

in which each element j € ) is computed as per eq. .
Now instead suppose that we never observe z, and instead of using predicted values of z, we
feed the second layer the probabilities o (0 - x). We can write the resulting model as



z=o(0"x)

p(y| %079 b) = softmax(0" 7z + b)

This model is known as a single-layer feedforward neural network, or somewhat inaccurately, as
a multilayer perceptron.

3 Learning

Neural networks’ parameters are usually trained to minimize the cross-entropy, the negative con-
ditional log-likelihood (Eisenstein: 52-53). Software packages like PyTorch or TensorFlow use
an abstraction known as the computation graph (Goldberg: 51f.) to automatically compute and
cache the derivatives, and to backpropagate gradients to earlier components in the network.

4 Learning theory

It is known (Goldberg: 44-45) that single-layer MLPs with a non-linear activation function are
a universal approximator, meaning that it can approximate any continuous real-valued function,
and any discrete function, so long as they are bounded. This may suggest that we don’t need
multiple hidden layers; however, some caution is in order. The above theorems have little to say
about how large the hidden layer has to be, and in fact there exist functions such that two small
hidden layers can approximate an arbitrary large single layer.

Whereas the linear models we reviewed last week are all convex, neural networks are gener-
ally non-convex and may have many local optima. However, empirical studies suggest that neural
network critical points—points at which the gradient is zero, halting gradient-based learning—are
often saddle points rather than true local minima (Eisenstein: 58). However, there is no general
guarantee of convergence nor any bounds on error. It may be the case that the assiduous use of
multiple hidden layers also speeds convergence.

5 Tricks

“Tricks” used to train neural networks include choice of non-linearity, clever random initializa-
tions, gradient clipping, custom optimization routines, learning rate scheduling, and novel forms
of regularization. All of these are supported by common neural network software.

5.1 Non-linearities

Early work in neural networks primarily used the sigmoid function ¢ as a non-linearity (or acti-
vation function), as we did above. Modern work tends to use the hyperbolic tangent function tanh,
which has the range (—1,+1). Another commonly used non-linearity is the rectified linear unit
(ReLU) given by
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Figure 2: Two commonly-used non-linearities: tanh and ReLU (after Eisenstein, figure 4.3).

ReLU(a) awherea> 0
eLU(a) =
0 otherwise

These non-linearities are visualized in Figure 2.

5.2 Initialization

Weights in a neural network model are often initialized randomly. Ideally, one should use several
random initializations. Xavier initialization, named for one of its creators, is claimed to be optimal
with a tanh nonlinearity; alternatives exist for other nonlinearities (Eisenstein: 59, Goldberg: 59).
The initialization of embeddings is somewhat unique. One can either initialize them by sam-
pling from a random uniform distribution, or initialize them from external embeddings created
with tools like Word2Vec or GloVe. In both cases, one may train them as part of network training;
in the case the embeddings are initialized from some external tool, this is known as fine-tuning.

5.3 Gradient clipping

The problem of exploding gradients is a poorly-understood hazard in neural network training.
To avoid this, a simple but effective solution (Eisenstein: 60, Goldberg: 60) is to “clip” gradients
(i.e., bound) whose L, norm exceeds a certain threshold.

5.4 Optimization

Neural networks are often trained using minibatches of examples (Goldberg: 61); sometimes mini-
batch size is bounded solely by the GPU. Today, few neural networks are trained using vanilla
minibatch stochastic gradient descent; rather, they use adaptive variants which use separate learn-
ing rates for each parameter, such as AdaGrad (Eisenstein: 38f.) or Adam.



5.5 Learning rate scheduling

It is often desirable to automatically decrease the learning rate according to some fixed schedule
as the model approaches convergence (Goldberg: 61). It may also be desirable to ramp up learning
rate at the start of training.

5.6 Dropout

Traditional regularization can be applied to neural networks (Eisenstein: 56f.); in this context they
are usually referred to as weight decay. A more-common method is the use of dropout, in which,
with some probability p, we set input and/or hidden unit activations to 0. As Eisenstein writes,
this “prevents the network from learning to depend too much on any one feature or hidden node
and prevents feature co-adaptation, in which a hidden unit is only useful in combination with
one or more other hidden units” (57).
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