
Neural networks
LING83600
Kyle Gorman

Graduate Center, City University of New York

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Simple discriminative linear classi�ers like logistic regression and support
vector machines have proved—and continue to be—highly e�ective tools
for a wide variety of speech & language processing problems. However,
they are increasingly outperformed by neural networks, a family of
discriminative, non-linear classi�ers. As Manning (2015) wrote a few years
ago, we are living through a “deep learning tsunami”.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Outline

• Simple linear classi�ers
• Multilayer perceptrons
• Learning
• Tricks
• Neural network hardware and software

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Simple linear classi�ers

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Text classi�cation

Let us suppose that we wish to predict the genre of various text
documents. Suppose further that for each document we have a vector of
raw token counts x (or TF-IDF counts).

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Simple linear text classi�cation

We wish to predict a label ŷ ∈ Y given x. To do this we use a scoring
function Ψ(x, y) such that

Ψ(x, y) = θ · f (x, y)

according to weights θ ∈ ÒVK where K = |Y| and V is the size of the
vocabulary and a feature function f . Inference is performed by selecting
the label ŷ ∈ Y which maximizes Ψ(x, y).

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

The XOR problem

However, the hypothesis class of simple linear models is severely
restricted, in the sense that many useful functions cannot be described
by a linear model. One well-known example is the xor (“exclusive or”)
function:

xor(0, 0) = 0

xor(1, 0) = 1

xor(0, 1) = 1

xor(1, 1) = 0

For this, there is no set of linear weights Ò2 and bias b ∈ Ò such that the
score of (0, 0) and (1, 1) are ≤ 0 but the scores of (1, 0) and (0, 1) are ≥ 0.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Non-linear transformations

However, there may exists non-linear transformations that make the data
linearly separable, such as φ(x1, x2) = [x1x2, x1 + x2] (Goldberg, p. 17).

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Multilayer perceptrons

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Introducing the multilayer perceptron

Neural network classi�ers are cascades of one or more linear models with
a trainable non-linearity. Such models are sometimes known—not very
informatively—as multilayer perceptrons (MLPs).

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Motivations

Imagine that we have raw observations x, features extracted from those
observations z = f (x, y), and labels y ∈ Y. Then, one could construct a
“two-step” classi�er as follows:

• Use one logistic classi�er to predict z according to p(zk | x).
• Use a second logistic classi�er to predict y according to p(y | z).

If we assume that each feature is binary, the �rst step can be written

p(zk = 1 | x; θ(x→z)) = σ(θ
(x→z)
k · x)

where σ is the non-linear sigmoid function

σ(x) =
1

exp(−x)
.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Motivations

We form θ(x→z) by concatenating (i.e., stack) the weight vectors for each
zk. Given a set of labelsY, the probability for a given label y ∈ Y is
given by

p(y = j | z; θ(z→y), b) =
exp(θ(z→y)

j · z + bj)∑
j′∈Y exp(θ(z→y)

j′ · z + bj′)
(1)

where bj is a bias term for label j ∈ Y, and θ(z→y) is once again formed
by concatenation. The vector of probabilities over each possible value of
y, the softmax, is denoted by

p(y | z; θ(z→y), b) = softmax(θ(z→y)z + b)

in which each element j ∈ Y is computed as above.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Formalization

Now instead suppose that we never observe z, and instead of using
predicted values of z, we feed the second layer the probabilities σ(θk · x).
We can write the resulting model as

z = σ(θ(x→z)x)

p(y | x; θ(z→y), b) = softmax(θ(z→y)z + b)

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Early history

• McCulloch and Pitts (1943) proposed nerve nets, a simple model of
computation loosely inspired by neurons.
• This inspired Rosenblatt (1958) to propose perceptrons, a form of
simple linear model.
• Minsky and Papert (1969) noted the XOR problem for simple linear
models in their 1969 book Perceptrons.
• Various authors noted at the time that a cascade of linear models,
one feeding into another, could get around the XOR problem, but
lacked an algorithm for learning the weights of such a cascade.
• Rumelhart et al. (1986) popularized the backpropagation algorithm
for learning these weights.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Learning

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Expressivity

According to the universal approximation theorem, any continuous
function over (a compact subset of) real numbers can be approximated
(to arbitrary precision) by an MLP with a single hidden layer and a �nite
number of neurons. However, this theorem doesn’t tell us

• how many neurons we need,
• whether we’d be better o� with two (or three, or four) hidden layers,
• how to learn the weights of that network from a �nite sample.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Optimization

Training simple linear models are convex optimization problems, and as
such, forms of stochastic gradient descent are guaranteed to converge on
an optimal solution under a wide variety of scenarios. In contrast, MLPs
are in non-convex and may have multiple local optima. There are no
general guarantees that neural network training will converge nor are
there any bounds on error.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Tricks

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Non-linearities
Early work in neural networks mostly used the sigmoid function σ as a
non-linearity, whereas modern work tends to use either

• the hyperbolic tangent function tanh or
• the recti�ed linear unit (ReLU).

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Initialization

Weights in a neural network are usually initialized by sampling values
randomly from some reference distribution. When working with a tanh
non-linearity, for example, Xavier initialization (Glorot and Bengio 2010)

W[l]i,j = N(0,
1

n[l−1]
)

where l is the layer index and n is the number of neurons in that layer, is
claimed to be optimal. Similar alternatives exist for other non-linearities;
see here for a demonstration.

http://wellformedness.com/courses/LING83600

https://www.deeplearning.ai/ai-notes/initialization/
http://wellformedness.com/courses/LING83600

Embedding initialization

For networks that involve an embedding layer, there are three
possibilities:

• Randomly initialize the embeddings and tune them during training.
• Use pre-trained embeddings (e.g., from Word2Vec, GloVe, fastText)
but �ne-tune them during training.
• Use pre-trained embeddings but do not �ne-tune.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Gradient clipping

Occasionally training fails to the poorly-understood problem of exploding
gradients. A simple but e�ective solution to this problem is to “clip” (i.e.,
bound) gradients when their overall magnitude (measured using the L2
norm) exceeds a certain hyperparameter threshold C ∈ Ò+.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Optimizers

Neural networks are trained with batched stochastic gradient descent
(SGD). Most researchers prefer adaptive variants of SGD like Adam
(Kingma and Ba 2015), which keep track of separate learning rates for
each parameter. Batch size itself is an important hyperparameter, and
interacts—often in unpredictable ways—with other hyperparameters like
learning rate, regularization coe�cients, etc.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Learning rate scheduling

It is usually desirable to gradually reduce the learning rate. Some popular
scheduling techniques involve decaying the learning rate

• learning rate linearly (i.e., dividing it by the number of updates),
• according to the inverse square root law (i.e., dividing it by the
inverse root square of the number of updates), or
• every time development set performance plateaus.

A fast linear ramp-up of the learning rate at the start of training from
some low rate is also recommended, particularly when training with
randomly-initialized embeddings.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Regularization

• Weight decay is a form of L2 regularization that can be applied to
neural networks; it imposes a penalty on large-magnitude weights.
• An alternative is dropout (Srivastava et al. 2014). For each neuron, at
each training step, we sample a number p ∈ [0, 1]. If p < P (where P
is a hyperparameter in the range [0, 1]), we “mask” (i.e., temporarily
ignore) the output of said neuron during that step.

Assiduous use of weight decay and/or dropout is essential to prevent
neural network over�tting.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Hardware and software

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

Hardware

The “tsunami” might never have arrived without Nvidia’s CUDA toolkit,
which enables power-e�cient, massively-parallel �oating-point number
computations—the type of computation that neural network training and
inference requires—to be run on Graphics Processing Units (GPUs) chips
originally designed for video gaming.

• The GC CL lab has six Nvidia GTX 1080 GPUs.
• Additional GPU capacity can be obtained from the High Performance
Computing Center at the College of Staten Island’s PENZIAS cluster.
• Google sells training/inference time with proprietary ASICs called
Tensor Processing Units (TPUs).

Neural networks can also be trained on conventional CPUs, but GPUs are
generally more e�cient and much faster.

http://wellformedness.com/courses/LING83600

https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/en-us/geforce/10-series/
https://cunyhpc.csi.cuny.edu/
https://cunyhpc.csi.cuny.edu/
http://wellformedness.com/courses/LING83600

Software

Rather than programming in CUDA itself, developers use Python
extension module libraries which dispatch the operations of the
computation graph to CUDA. The two best-known libraries are

• Facebook’s PyTorch and
• Google’s TensorFlow.

Python libraries like AllenNLP, FairSeq, HuggingFace, Keras, NeMo, and
PyTorch Lightning provide friendlier, task-speci�c interfaces to PyTorch
and/or TensorFlow.

http://wellformedness.com/courses/LING83600

https://pytorch.org/
https://www.tensorflow.org/
https://github.com/allenai/allennlp
https://github.com/pytorch/fairseq
https://huggingface.co/
https://keras.io/
https://developer.nvidia.com/nvidia-nemo
https://www.pytorchlightning.ai/
http://wellformedness.com/courses/LING83600

References I

X. Glorot and Y. Bengio. Understanding the di�culty of training deep
feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Arti�cial Intelligence and Statistics, pages
249–256, 2010.

D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. In 3rd
International Conference on Learning Representations: Conference
Track Proceedings, 2015.

C. D. Manning. Computational linguistics and deep learning.
Computational Linguistics, 41(4):701–707, 2015.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

References II
F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):
386–408, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, 1986.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from over�tting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

http://wellformedness.com/courses/LING83600

http://wellformedness.com/courses/LING83600

	References

