Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

new state

> old state input vector at some time step

$$
\begin{aligned}
& \text { some function } \\
& \text { with parameters } \mathrm{W}
\end{aligned}
$$

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
y_{t} & =W_{h y} h_{t}
\end{aligned}
$$

RNN: Computational Graph

Fei-Fei Li \& Justin Johnson \& Serena Yeung
Lecture 10-23 May 4, 2017

RNN: Computational Graph

Fei-Fei Li \& Justin Johnson \& Serena Yeung
Lecture 10-24 May 4, 2017

RNN: Computational Graph

RNN: Computational Graph

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input
sequence in a single vector

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output sequence from single input vector
Many to one: Encode input sequence in a single vector

Example:
 Character-level Language Model

Vocabulary:
 [h,e,l,o]

Example training
sequence:
"hello"

Example:
 Character-level Language Model

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right)
$$

Vocabulary:
[h,e,l,o]
Example training sequence: "hello"

Example: Character-level Language Model

Vocabulary: [h,e,l,o]
 Example training sequence: "hello"

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 10-36 May 4, 2017

Example: Character-level Language Model Sampling

Fei-Fei Li \& Justin Johnson \& Serena Yeung
Lecture 10-37 May 4, 2017

Example: Character-level Language Model Sampling

Example: Character-level Language Model Sampling

Vocabulary:

[h,e,l,o]

At test-time sample characters one at a time, feed back to model

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters one at a time, feed back to model

Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

min-char-rnn.py gist: 112 lines of Python

```
Ninimal character-level vanilla RNN model. Written by Andrej Karpathy (Gkarpathy)
so Licens
"""
data I/0
data =open(' 'input.txt',
Mlars =11.st(set(data))
data_size, vocab_size = len(data), 1en(chars)
*)
"" hyperparameters
Midde_size =100 * size of nidden Iayer of neurons
searning_rate = 1e-1
*)
Whh =np.random.randn(hidden_size, hidden_size):001 & hidden to hidden
why =n..random.randn(vocab_size, hidden_size)*0.
*on= np.zeros((hidden__size, 1))= hidden bias
def lossfun(inputs, targets, hprev)
    inputs, targets are both list of integers.
    l
    xs, hs, ys, ps = 0, 0], 0],0
hs[-1]=n. n. 
fort in xrange(len(inputs)):
    *s[t] = np.zeros((vocab_size,1)) = encode in 1-of-k representation
    ns[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, ns[t-1]) + bh) enidden state
    ys[t] = np.dot(Why, ns[t]) + by * unnornalized 1og probabilities for next chats
    ps[t] =np.exp(ys[t])/np.sum(np.exp(ys[t])) % probabilities for next chars
    1oss += -np.1og(ps[t][targets[t],0])
# backuard pass: compute gradients going bachwards (Wh), n._zeros_like(\mathrm{ (Why)}
dbh, doy = np.zeros__1ike(bh), np.zeros__1.ike(by)
dal
    dy = no.copy(cos[t])
    dy[targets[t]] =
    why *= np.dot(dy, hs[t].T)
    doy += d
    dh = np.dot(why.T, dy) + dhnext % backprop into h
    dinrau=(1. h
    dwxh += np.dot(dhraw, xs[t].T)
    comen
    MWht t= np.dot(dhraw, hs[t-1],
    for dparam in in otwothh, dwhw, dhawn), duny, dbh, dbyl:
```



```
f."nmple(h, seed_ix, n
```

sample a sequence of integers from the model
h is memory state, seed_1x is seed 1etter for first time step
$x=$ np.zeros ((vocab_size, 1))
$\begin{aligned} & x\left[\text { seed } _i x\right] \\ & i x e s \\ & i x]\end{aligned}=$

$y=n p . \operatorname{dot}($ (Why, $h)+b y$
$p=n p . \operatorname{bxp}(y) \quad$ np. sum $(n p . \exp (y))$

$x=$ np.zeros $($ (vocab_size, 1))
$x[i x]=1$
$i x e s$.append(i$)$
ixes. append(ix)
return ixes

smooth_loss $=-$ np. 1 log(1.e/vocab_size) 'seq_length $=$ loss at iteration o

hprev $=$ np.zeros ((hidden_size,
$\mathrm{p}=\theta=\mathrm{gos}$ from start of data
pers = = char

a sample from the model now and then
sample_ix = sample(hprev, inputs[日], 20e

perform parameter wist
or param, dparan, mem in zip((hxd, whh, why, bh, by], $\begin{gathered}\text { [duxhh, dwhh, duhy, dob, dby] }\end{gathered}$
mem $+=$ dparam \cdot dparam
param $+=-$-learning_rate

p += seq_length * move data pointer
(https://gist.github.com/karpathy/d4dee 566867f8291f086)

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a tatter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
f thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

```
tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng
```


train more

```
"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."
```


train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

```
"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
```


Fei-Fei Li \& Justin Johnson \& Serena Yeung

