
Review of context-free grammars

LING83600

1 Introduction
Context-free grammars (or CFGs) are a formalization of what linguists call “phrase structure gram-
mars”. The formalism is originally due to Chomsky (1956) though it has been independently dis-
covered several times. Despite their limitations, CFG grammars of human languages are widely
used as a model of syntactic structure in natural language processing and understanding tasks,
and virtually all modern programming languages are described with, and parsed as, a CFG.1

Bibliographic note
This handout covers the formal definition of context-free grammars. Algorithms for parsing
CFGs are covered in later courses. The definitions here are loosely based on Jurafsky and Martin
in preparation, chap. 12, who in turn draw from Hopcroft and Ullman 1979.

2 Definitions

2.1 Context-free grammars
A context-free grammar G is a four-tuple N, Σ, R, S such that:

• N is a set of non-terminal symbols, corresponding to phrase markers in a syntactic tree.

• Σ is a set of terminal symbols, corresponding to words (i.e., X0s) in a syntactic tree.

• R is a set of production rules. These rules are of the form A → β where A ∈ N and β ∈
(Σ ∪ N)∗. Thus A is a phrase label and β is a sequence of zero or more terminals and/or
non-terminals.

• S ∈ N is a designated start symbol (i.e., the highest projection in a sentence).

For simplicity, we assume N and Σ are disjoint. As is standard, we use Roman uppercase charac-
ters to represent non-terminals and Greek lowercase characters to represent terminals.

1For example, the following is the full grammar specification for Python 3: https://docs.python.org/3/
reference/grammar.html. This file is actually used to generate a parser for the CPython interpreter.



2.2 Derivation
Direct derivation describes the relationship between the input to a single grammar rule in R and
the resulting output. If there is a rule A → β ∈ R, and α, γ are strings in (Σ ∪ N)∗, then

αAγ ⇒ αβγ

i.e., αAγ directly derives αβγ . Derivation is a generalization of direct derivation which allows us
to iteratively apply rules to strings. Given strings α1, α2, αm ∈ (Σ ∪ N)∗ such that α1 ⇒ α2, and
α2 ⇒ α3, …, αm−1 ⇒ αm, then

α1
∗⇒ αm

i.e., α1 derives αm (and α1 also derives α2, α3, etc.).

2.3 Context-free language
The language LG generated by some grammar G is the (possibly infinite) set of strings of terminal
symbols that can be derived by G starting from the start symbol S.

3 Chomsky-normal form
Syntacticians have long had a preference for binary branching syntactic structures, meaning that
each non-terminal node has at most two children. This assumption greatly simplifies parsing
algorithms as well. One way this is enforced by converting grammars or treebanks to a format
known as Chomsky normal form (CNF; Chomsky 1963). In Chomsky normal form, the elements
of R, the set of production rules, are constrained to have one of two forms:

• A → B C where A, B,C ∈ N.

• A → β where A ∈ N and β ∈ Σ.

In other words, the right-hand side of every rule either consists of two non-terminals or one
terminal. There exists for every CFG grammar a weakly equivalent CNF grammar, meaning that
there exists a CNF which generates the same language (though it does not necessarily assign
exactly the same phrase structure). For instance, given the rule A → B C D, we can convert this
to two CNF rules, namely A → B X and X → C D.

References
Chomsky, Noam. 1956. Three models for the description of language. IEEE Transactions on Infor-
mation Theory 3:113–124.

Chomsky, Noam. 1963. Formal properties of grammars. In Handbook of Mathematical Psychology,
ed. R. Duncan Luce, Robert R. Bush, and Eugene Galanter, 323–418. John Wiley & Sons.

Hopcroft, John E., and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Jurafsky, Dan, and James H. Martin. in preparation. Speech and Language Processing. 3rd edition.


