
CYK parsing

LING83600: Language Technology

 



The task

Constituency (or constituent) parsing refers to recovering the derivational structure of 
a sentence, usually assuming it was generated by a context-free grammar.

Shieber (1986) shows, conclusively, that human language is not even weakly 
context-free; and one can parse using mildly context-sensitive grammars (MCSGs), 
such as

● lexicalized tree-adjoining grammars (LTAGs) or
● combinatory categorial grammar (CCGs).

CFGs can be parsed in O(n3) or better; MCSGs can be parsed in O(n6).



Ambiguity

Non-trivial CFGs tend to have substantial ambiguities, so we use:

● Probabilistic productions, making the grammar a PCFG and parsing a special 
case of the Viterbi algorithm

● Learned (e.g., Klein & Manning 2003) or induced (e.g., Petrov et al. 2006) 
enrichments to the productions to encode argument structure of verbs, etc.

● Optionally, discriminative reranking (e.g., Collins 1999, Bikel 2004)

None of these has a major impact on the actual parsing algorithm, however.



Structural ambiguity: prepositional phrase attachment

Pope Francis on Saturday appointed a victim of sexual abuse and a senior 
cardinal known for his zero-tolerance approach to a new group charged with 
advising the Catholic Church on how to respond to the problem of sexual abuse of 
children. (Wall St. Journal, 2014-03-22)

● The prepositional phrase on Saturday is construed as a modifier of Pope Francis 
rather than of appointed.

● The phrase to a new group charged with advising the Catholic Church on how to 
respond to the problem of sexual abuse of children is construed as a modifier of 
zero tolerance approach rather than of appointed.

http://languagelog.ldc.upenn.edu/nll/?p=11286

http://languagelog.ldc.upenn.edu/nll/?p=11286


CFGs and compilers

CFG parsing has been studied extensively for compiler design long before it was 
used to parse natural language.

Computer languages are designed to be unambiguous or even deterministic, and 
compiler designers can take advantages of more-efficient algorithms for these 
special cases (e.g., the Earley algorithm, the LL and LALR parsers, etc.).

Probably the best known parsing algorithm for natural language is the 
simultaneously-invented Cocke-Younger-Kasami (CYK or CKY) algorithm, a simple 
bottom-up parsing algorithm.

https://en.wikipedia.org/wiki/Multiple_discovery


Aho & Ullman 1977

Aho, Sethi & Ullman 1986

Aho, Lam, Sethi & Ullman 2006



Example grammar

S → NP VP
VP → VP PP # Permits PPs to adjoin to VP.
VP → V NP # Permits transitive VPs.
VP → V # Permits intransitive VPs.
PP → P NP
NP → D N # Permits article-noun NPs.
NP → NP PP # Permits PPs to adjoin to NP.
NP → N # Permits bare NPs.
NP → Pagliaccio
V → eats
N → spaghetti | fork
P → with
D → a



Eliminate unary productions

Before:

VP → V
NP → N

After:

VP → eats 
NP → spaghetti, fork



Grammar representation structure

The preterminal rules are simple mappings, and only used once.

preterminals: Dict[str, List[str]]

The non-terminal rules map from pairs of strings (the 
children/daughters/productions) to non-terminals.

nonterminals: Dict[Tuple[str, str], List[str]]

Looking up productions to find candidate non-terminals is known as grammar 
intersection. Intersection is performed O(n3) times, so it has to be constant-time.



Pagliaccio eats spaghetti 
with a fork

(Do you see the ambiguity?)



http://www.youtube.com/watch?v=v7rrbBS3cPc


The ambiguity

1. Pagliaccio [VP [VP eats spaghetti] [with a fork] ]

(The fork is an instrument for eating.)

2. Pagliaccio eats [NP [NP spaghetti] [with a fork] ]

(The fork is a tasty topping for the spaghetti.)



The CYK chart

Given a sentence of length n, construct an n x n table, empty above the diagonal, in 
which each cell is a container of non-terminal labels.

For efficient memory use you might want to construct a Chart class that has-a n x n 
/ 2 + 1 array and overloads __getitem__ and __setitem__ so you can pretend 
you really do have a n x n table without wasting the extra space.



(If you find an error in the 
demo, let me know.)



Initial chart (plus an extra row at the bottom, for display)

Pagliaccio eats spaghetti with a fork



Insert preterminals

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 2 spans

S

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 2 spans

S VP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 2 spans

S VP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 2 spans

S VP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 2 spans

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 3 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork

(This is the NP-adjunction analysis.)



Size 4 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 4 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 5 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 5 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 5 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 5 spans

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 5 spans

VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork

(This is the NP-adjunction analysis.)



Size 5 spans

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork

(This is the VP-adjunction analysis.)



Size 5 spans

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 5 spans

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 6 spans

S, S

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 6 spans

S, S

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 6 spans

S, S

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 6 spans

S, S

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Size 6 spans

S, S

VP, VP

NP

S PP

S VP NP

NP VP NP P D NP

Pagliaccio eats spaghetti with a fork



Recognition vs. parsing

When there an S in the top-left cell of the chart, the sentence is recognized by the 
grammar; i.e., there is at least one complete parse of the sentence.

To actually parse (and to extract the parses), we have to keep backtraces similar to 
Viterbi decoding.



Generalizing to PCFGs

Whereas above each cell was a container of non-terminals, in PCFG parsing each cell 
is a container of triples of;

1. non-terminal
2. log-probability
3. backtraces

Much like with the Viterbi algorithm, we obtain the highest-probability parse by 
tracing back from the highest-probability S-triple in the top-left cell.



Data

Unlike dependency parsing (the subject of next week's lecture), constituency parsing 
treebanks are available for maybe a dozen languages, and many are proprietary. Two 
widely studied ones are:

● English: The Wall St. Journal portion of the Penn Treebank, 3rd edition (Marcus 
et al. 1999; first release was 1993, I think)

● German: The Tiger2 corpus (Brants et al. 2002)

For German, which is "morphologically rich and less-configurational", it is generally 
agreed that parsing is poor without the assistance of a high-quality morphological 
analyzer (e.g., Dubey 2005, Fraser et al. 2013, Dehouck and Denis 2018).



Evaluation

Parsing performance is usually evaluated using the F-score of the constituents:

● Precision: the number of the constituents in the candidate/hypothesis parse that 
are present in the gold/reference parse

● Recall: the number of constituents in the gold/reference parse that are present 
in the candidate/hypothesis parse

● F-score: the harmonic mean of precision and recall

PARSEVAL (Black et al. 1991), a widely used evaluation script, also includes a 
measure that counts crossing brackets.



Software

● Charniak (2000) is the best-known of the PCFG-plus-discriminative-reranking 
parsers and is still used for feature extraction (etc.)

● The BUBS "grammar-agnostic" parser (Bodenstab et al. 2011, Dunlop et al. 2011) 
is a good tradeoff between simplicity and generality, speed and accuracy; 
unfortunately it's in Java



This week

Please read:

● Eisenstein ch. 10, and
● (optionally) Jurafsky & Martin ch. 12-14.



Project ideas

● Implement either of the "Berkeley" parsers (Klein & Manning or Petrov et al.) and 
evaluate using the standard split of the Wall St. Journal portion of PTB-3.

● Perform a hybrid (automatic-manual) error analysis of prepositional phrase 
attachment ambiguity.

● Study the effects of morphological features in constituency parsing along the 
lines of Fraser et al. 2013, etc.


