
Dependency parsing

LING83600

1 Introduction
Simple context-free grammars do not encode the notion of headedness, informally defined as
follows:

X is the head of a constituent XP if and only if X is an immediate daughter of XP, and
X “determines the category of XP”.

But headedness is a core topic in recent syntactic theory, and modern CFG parsing makes exten-
sive use of head rules, hand-written generalizations about headedness, e.g., “the head of a verb
phrase (VP) is a verb (V*) or modal (MD)”, to resolve grammatical ambiguities.

Dependency grammar (Tesnière 1959) began its life as a fringe theory of syntax, largely ig-
nored until it was rediscovered in by specialists in natural language processing in search of faster
parsing algorithms. Dependency parsing is now a core NLP task, and the subject of numerous
shared tasks over the last decade or so (e.g., Buchholz and Maris 2006, Nivre et al. 2007, Seddah
et al. 2014, Zeman et al. 2017, 2018). Thanks to the Universal Dependencies project,1 dependency-
parsed data is freely-available for over seventy languages.

Bibliographic note
Eisenstein (2019: ch. 11) discusses dependency parsing in detail. Kübler et al. 2009 is the only book-
length treatment of dependency parsing, and some definitions here have been loosely adapted
from chap. 2 of that resource. The shift-reduce parsing example is adapted from unpublished
slides by Brian Roark.

Software note
UDPipe (Straka et al. 2016) is an excellent tokenizer-tagger-dependency parser, and comes with
pre-trained models for Universal Dependencies languages.2 SpaCy is another popular option,
with good documentation.3 New BERT-based parsers are slowly replacing all of the above.

1 https://universaldependencies.org/
2 http://ufal.mff.cuni.cz/udpipe
3 https://spacy.io/

https://universaldependencies.org/
http://ufal.mff.cuni.cz/udpipe
https://spacy.io/


S The aged bottle flies fast

det

amod

root

nsubj advmod

Figure 1: Dependency graph for the sentence The aged bottle flies fast.

2 Definitions

2.1 Dependency grammar
Dependency grammar has proved difficult to formalize, but the following provides a general for-
malism expressed in similar terms to the formalization of CFGs earlier. A dependency grammar
G is a triple where:

• S is the designated start symbol (i.e., the highest projection in a sentence).

• Σ is an array of terminal symbols, corresponding to words (i.e., X0s) in a syntactic tree.

• R is a set of production rules. These rules are of the form A → β where A ∈ Σ ∪ {S} and
β ∈ Σ.

2.2 Derivation
A derivation in dependency grammar is expressed as a dependency graph, a directed graph repre-
sented by states Σ∪{S} and arcs R. A dependency graph iswell-formed when for all s, s′ ∈ Σ∪{S}
if (s, d) ∈ R then (s′, d) ̸∈ R where s′ ̸= s. That is, a dependency graph is well-formed if each
terminal state β ∈ Σ has exactly one incoming arc from A ∈ Σ ∪ {S} such that A → β is a pro-
duction rule in R. Because of this last restriction, we can represent a dependency tree compactly
by storing the terminal array Σ and an arrayH whereH(i) is the index of the incoming arc (i.e.,
the head of) the ith state in Σ. For instance, Figure 1 is characterized by:

• Σ = [The, aged, bottle, flies, fast].

• H = [3, 3, 4, 0, 4].

3 Projectivity
We say a dependency graph is projective if when the words are put in linear order, none of the
dependency edges cross/intersect. One way to formalize this is to require that if some A ∈ Σ
is a head then all heads and their direct dependencies form a contiguous substring; that is, if A
is a head, all of its left dependents must be immediately to the left and all of its right dependents



S À qui veux tu que Pierre parle

FILLER

FILLER

FILLER
FILLER

FILLER

FILLER

FILLER

Figure 2: Non-projective dependency tree of the French sentence À qui veux-tu que Pierre parle
‘To whom do you want Pierre to talk?’.

must be immediately to the right. This property is often assumed by methods for converting
constituency to dependency, as well as by some parsing algorithms. However, non-projectivity
is useful, or even essential, in many languages (e.g., Figure 2; cf. McDonald et al. 2005).

4 Dependency-constituency conversion
With a complete set of head rules, it is possible to convert a constituency tree to a dependency
tree, according to the following algorithm:

• Decorate each non-terminal node in the constituency tree with its head (e.g., Figure 3).4

• Initialize the graph with an arc from the start symbol S to the head of the constituency tree.

• Traverse the tree, and for each non-terminal node s ∈ S, find all nodes s′ it immediately
dominates; if s and the dominated node s′ do not share a head label, add an arc (H(s),H(s′));

While dependency is not an inherently typed relation, it is also possible to label dependencies
(e.g., advmod: “adverbial modifier of”). A constituency tree “decorated” with head rules is shown
in Figure 3, and Figure 4 shows a labeled dependency graph for the same sentence.

5 Parsing

5.1 Maximum spanning tree parsing
The earliest work on automatic dependency parsing employs a highly inefficient generativemodel.
McDonald et al. (2005) propose an influential graph-theoretic algorithm, as follows:

• Initialize the parse as a fully connected directed graph with states Σ ∪ {S}.

• Weight all arcs according to some arbitrary fitness function.

4 We assume that terminals are their own heads and ignore unary productions (including preterminals).



S(flies)

VP(flies)

ADVP

RB

fast

VBZ

flies

NP(bottle)

NN

bottle

ADJP

VBN

aged

DT

The

Figure 3: Penn Treebank-style constituency parse of the sentence The aged bottle flies fast, with
propagated heads in parentheses

S The aged bottle flies fast

det

amod

root

nsubj advmod

Figure 4: Labeled dependency graph for the sentence The aged bottle flies fast.

• Compute the maximum spanning tree of this graph.5

5.2 Shift-reduce parsing
However, if we assume projective graphs, shift-reduce parsing offers a linear-time algorithm for
dependency parsing. In this framework, parses are generated incrementally by factoring them
into a series of shift (state changing) and reduce (arc-adding) operations. The fitness of a shift or
reduce operation is determined by an arbitrary fitness function over the incomplete parse.

The shift-reduce parser state is represented by a stack S , a buffer B, as well as a partial parse.
At initialization, S contains only the designated start symbol S, and the buffer B is simply Σ.
Parsing halts when B is empty and S contains only S. The parse is built up incrementally by a
series of shift and reduce transitions. There are several ways to define these transitions. One of
the best known is the arc-standard system, which defines the following operations:

• The shift operation removes the first element from the buffer and pushes it onto the stack.

• The left-reduce operation pops the top two elements of the stack (si and sj, where sj was
previously immediately above si), creates a leftward dependency si ← sj, and then pushes
the head sj back onto the stack.

5 This is the subset of the graph that connects all states without cycles and maximizes the total weight of the
remaining arcs. The standard algorithm runs in cubic time.



Stack Buffer Move

0. S The aged bottle flies fast shift
1. S The aged bottle flies fast shift
2. S The aged bottle flies fast shift
3. S The aged bottle flies fast left-reduce (aged← bottle)
4. S The bottle flies fast left-reduce (The← bottle)
5. S bottle flies fast shift
6. S bottle flies fast left-reduce (bottle← flies)
7. S flies fast shift
8. S flies fast right-reduce (flies→ fast)
9. S flies right-reduce (S→ flies)

10. S halt

Table 1: A sample arc-standard derivation of the sentence The aged bottle flies fast.

Stack Buffer Move

0. S The aged bottle flies fast shift
1. S The aged bottle flies fast shift
2. S The aged bottle flies fast left-reduce (aged← bottle)
3. S The bottle flies fast left-reduce (The← bottle)
4. S bottle flies fast shift
5. S bottle flies fast left-reduce (bottle← flies)
6. S flies fast shift
7. S flies fast shift
8. S flies fast right-reduce (flies→ fast)
9. S flies right-reduce (S→ flies)

10. S halt

Table 2: A sample arc-hybrid derivation of the sentence The aged bottle flies fast.

• The right-reduce operation pops the top two elements of the stack (si and sj, defined as
before), creates a rightward dependency si → sj, and pushes the head si onto the stack.

Note that the reduce operations are only defined when there are at least two symbols on the stack;
otherwise, shift is the only option. A sample arc-standard derivation is shown in Table 1.

The arc-hybrid transition system is a variant of the arc-standard system. The invariant prop-
erty of the arc-standard system is that reduce operations apply when the top two elements on the
stack are in a head-dependent relationship. In contrast, the invariant property of the arc-hybrid
system is that reduce operations apply when the top of the stack is a dependent. The arc-hybrid
system uses the same definition of the shift and right-reduce operations as the arc-standard sys-
tem. Thus, when head of the top of the stack is immediately below it on the stack, right-reduce
applies as before. However, arc-hybrid left-reduce applies now when the head of the top of the
stack is at the front of the buffer. A sample arc-hybrid derivation is shown in Table 2.

But how do we predict which transition to use at any point? Transitions are usually predicted



using a classifier with features based on any of the following:

• Direction of dependency (e.g., how likely is a token/tag to have a leftward dependent?)

• Distance of dependency (e.g., how likely is a token/tag to have a dependent n symbols to
the left?)

• Valency of heads (e.g., how likely is a token/tag to have n dependents?)

• Bilexical relations (e.g., how likely is a token/tag to have some other hypothesized token/tag
as a dependent?)

• Tokens or tags of nearby dependencies in the partial parse

• The last few tokens or tags in the stack

• The next few tokens or tags in the buffer

• Various conjunctions of the above

5.3 Dynamic oracles
To train the fitness function, it is also necessary to construct an oracle, a function which derives
optimal transition sequences from gold dependency parse trees. A static oracle produces a single
transition sequence, but this is suboptimal as most transition systems (including the ones above)
exhibit spurious ambiguity—many transition sequences may map onto the same gold tree. Thus
state-of-the-art transition-based dependency parsers use a dynamic oracle (Goldberg and Nivre
2012). At each parser configuration, the dynamic oracle computes the cost for all valid transitions.
A transition t is optimal if it does not commit the parser to a parsing error, meaning that the
number of gold arcs reachable after applying t to the current configuration is not less than those
reachable before applying it.

For instance, if we pop the top of the stack (as in both arc-hybrid reduce operations), it is no
longer possible to create arcs between the element at the top of the stack and any elements in the
buffer, so this has non-zero cost if there are any such dependencies in the gold parse. The cost of
a transition t is defined as the number of gold arcs made unreachable by applying it the current
configuration.6 The dynamic oracle predicts the highest-scoring no-cost transition. In the case
that there is no such transition, one may halt training for this sentence, randomly select a valid
move, or select the lowest-cost move.

6 Applications
In addition to recovering head-dependent relationships—itself a useful service—dependency pars-
ing is an efficient way to generate syntactic features for downstream NLP tasks including:

• “string-to-dependency” machine translation (e.g., Shen et al. 2008),

6 For a full explication of cost functions for various transition systems, see Goldberg and Nivre 2013.



• vector-space semantic models (e.g., Levy and Goldberg 2014),

• grammatical error detection (e.g., Morley et al. 2014), and

• disfluency detection (e.g., Honnibal and Johnson 2014).

References
Buchholz, Sabine, and Erwin Maris. 2006. CoNLL-X shared task on multilingual dependency

parsing. In Proceedings of the Tenth Conference on Computational Natural Language Learning,
149–164.

Eisenstein, Jacob. 2019. Introduction to Natural Language Processing. MIT Press.
Goldberg, Yoav, and Joakim Nivre. 2012. A dynamic oracle for arc-eager dependency parsing. In

Proceedings of COLING 2012, 959–976.
Goldberg, Yoav, and Joakim Nivre. 2013. Training deterministic parsers with non-deterministic

oracles. Transactions of the Association for Computational Linguistics 1:403–414.
Honnibal, Matthew, and Mark Johnson. 2014. Joint incremental disfluency detection and depen-

dency parsing. Transactions of the Association of Computational Linguistics 2:131–142.
Kübler, Sandra, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Clay-

pool.
Levy, Omer, and Yoav Goldberg. 2014. Dependency-based word embeddings. In Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
302–308.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-projective depen-
dency parsing using spanning tree algorithms. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing, 523–530.

Morley, Eric, Anna Eva Hallin, and Brian Roark. 2014. Data-driven grammatical error detection
in transcripts of children’s speech. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, 980–989.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. 2007. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, 915–932.

Seddah, Djamé, Reut Tsarfaty, and Sandra Kübler. 2014. Introducing the SPRML 2014 shared
task on parsing morphologically-rich languages. In 1st Joint Workshop on Statistical Parsing of
Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages, 103–109.

Shen, Libin, Jinxi Xu, and Ralph Weischedel. 2008. A new string-to-dependency machine trans-
lation algorithm with a target dependency language model. In Proceedings of ACL-08: HLT ,
577–585.

Straka, Milan, Jan Hajič, and Jana Straková. 2016. UDPipe: trainable pipeline for processing
CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing. In
Proceedings of the Tenth International Conference on Language Resources and Evaluation, 4290–
4297.



Tesnière, Lucien. 1959. Éléments de syntaxe structurale. Klincksieck.
Zeman, Daniel, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim Nivre,

and Slav Petrov. 2018. CoNLL 2018 shared task: multilingual parsing from raw text to universal
dependencies. In CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies, 1–21.

Zeman, Daniel, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter, …, and Josie Li.
2017. CoNLL 2017 shared task: multilingual parsing from raw text to universal dependencies.
In CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, 1–19.


	Introduction
	Definitions
	Dependency grammar
	Derivation

	Projectivity
	Dependency-constituency conversion
	Parsing
	Maximum spanning tree parsing
	Shift-reduce parsing
	Dynamic oracles

	Applications

