STATISTICAL MACHINE TRANSLATION

OUTLINE

- Some basic concepts in machine translation design
- Evaluating translation quality using BLEU score
- The generative models underlying Candide, the influential statistical machine translation system

THE NOISY CHANNEL MODEL OF TRANSLATION

Warren Weaver, 1949 Rockefeller Foundation memorandum Translation:
"When I look at an article in Russian, I say: this is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

$$
\operatorname{argmax}_{e} P(e) P(r \mid e)
$$

Machine translation received massive US government funding in the '50s and early '60s, but made next to no progress on the core problems.

The ALPAC report (1964) recommended that government-funded MT research focus on:

1. practical methods for evaluation of translations
2. evaluation of quality and cost of various sources of translations
3. production of adequate reference works for the translator, including the adaptation of glossaries that now exist primarily for automatic dictionary look-up in machine translation

This (ultimately) lead researchers to adopt a clearer problem statement, the modeling of translator behavior.

Effective domain-general machine translation systems consist of...
data-driven, language-agnostic models of translator behavior...
paired with language-specific models of linguistic analysis and generation.

SOURCE

TARGET

the [blue house] ${ }_{i}$
the $_{i}$ blue $_{j}$ house $_{k}$

Semantic transfer
$\lambda x . \operatorname{HOUSE}(x) \& \operatorname{BLUE}(x)$

la [maison bleue] ${ }_{i}$
lai maisonk bleue $_{j}$

THE QUADRATIC GROWTH PROBLEM

As the number of languages a system supports (n) increases, the number of translation models needed grows quadratically to $n^{2}-n^{*}$

Thus, when developing multilingual translation systems, we place language-specific methods in the monolingual analysis and generation models so the translation model is as language-independent as possible.

In the early 1990s, a team at IBM Research built
Candide, the first modern statistical machine translation system. We will be reviewing the intuitions behind Candide in great detail.

BLEU SCORE HANDOUT

Candidate:

Many will lose their right to a pension in their own name because of their husband 's income.

Reference: Many will lose their right to draw a pension with their own name because of the income of their husband.

Candidate:

Many will lose their right to a pension in their own name because of their husband 's income.

Reference: Many will lose their right to draw a pension with their own name because of the income of their husband.

Candidate:

Many will lose their right to a pension in their own name because of their husband 's income.

Reference: Many will lose their right to draw a pension with their own name because of the income of their husband.

$$
\begin{array}{lll}
p_{1}: 17 / 19=.895 & & \\
p_{2}: 12 / 18=.667 & G M_{n} & =.544 \\
p_{3}: 8 / 17=.471 & B P & =.900 \\
p_{4}: 5 / 16=.313 & B L E U & =.490
\end{array}
$$

BLEU is one of the first evaluation metrics which is wellcorrelated with human judgements of translation quality.

THE CANDIDE STATISTICAL MACHINE TRANSLATION MODELS

[Brown et al. 1990, 1993, Knight 1999]

TRANSLATION STORY ELEMENTS

- The translation model $P(t \mid s)$ helps to select likely translations:
$P($ house \mid maison $)>P($ dog \mid maison $)$
- The language model $P(t)$ helps with source-to-target polysemy:
$P($ in the end zone) $>P$ (on the end zone)
- It also helps to sort out word order:
P (the dog runs) $>P$ (runs dog the)
- Decoding helps us find "likely" "stories".

MODEL I: BASIC STORY

1. Given a source S of length $|S|$, select a target length $|T|$ according to $P(|T|||S|)$
2. Populate T with tokens t according to $P(t \mid s)$
3. Reorder the tokens in T to maximize $P\left(t_{0} \ldots t_{\mid T}\right)$

MODEL I: TRANSLATION MODEL ESTIMATION VIA THE EM ALGORITHM

1. Compute $P(t \mid s)$, the MLE conditional probability distribution of s and t co-occurring
2. For n iterations:
3. Initialize $a(s, t)=0, Z(t)=0$ for all $s \in S, t \in T$.
4. For all pairs of sentences S, T :

For all $s \in S, t \in T$,

$$
\begin{aligned}
& a(s, t)=a(s, t)+P(t \mid s) \\
& Z(t)=Z(t)+P(t \mid s) .
\end{aligned}
$$

3. For all s, t, let

$$
P(t \mid s)=a(s, t) / Z(t)
$$

then normalize $P(t \mid s)$.

Source:

LA MAISON BLEUE
LA MAISON
MAISON

Target:

THE BLUE HOUSE
THE HOUSE
HOUSE

ITERATION 0 (MLE ONLY)

$P($ HOUSE | MAISON $)=.500$
$P($ BLUE \mid MAISON $)=.167$
$P($ THE \mid MAISON $)=.333$

ITERATION 1

$P($ HOUSE | MAISON $)=.440$
$P($ BLUE \mid MAISON $)=.233$
$P($ THE \mid MAISON $)=.327$

ITERATION 2

$P($ HOUSE | MAISON $)=.478$
$P($ BLUE \mid MAISON $)=.196$
$P($ THE | MAISON $)=.325$

ITERATION 10

$P($ HOUSE | MAISON $)=.643$
$P($ BLUE \mid MAISON $)=.077$
$P($ THE \mid MAISON $)=.280$

MODEL II

1. Given a source S of length $|S|$, select a target length $|T|$ according to $P(|T|||S|)$
2. For each source token s_{i} and the null token, "align" it with some t_{j} according to $P(i, j)$
3. Translate all aligned source/target s_{i}, t_{j} pairs according to $P\left(t_{j} \mid s_{i}\right)$.

MODEL III

Distortion parameters are now sensitive to lengths:
$P(i|j,|S|,|T|)$ is the probability that source token j corresponds with (i.e., is aligned to and is translated by) target token i when the source is $|S|$ tokens long and the target is $|T|$ tokens long

Each source word has a fertility parameter:
$P(3 \mid s)$ is the probability that s aligns to exactly 3 target words

MODEL III

$P(n \mid s)$: target token s aligns to n source tokens
$P(t \mid \varnothing)$: a target token t aligns to no source token
$P(t \mid s)$: target token t is generated by aligned source token s
$P(j|i,|S|,|T|)$: target token t appears in position j when it is generated by aligned source token in position i and the source and target are $|S|$ and $|T|$ long, respectively
$P\left(t_{0} \ldots t_{T}\right)$: the target consists of $t_{0} \ldots t_{|T|}$

MODEL III

EM ALGORITHM FOR MODEL III

- One candidate alignment:

$$
f_{d}(8 \mid 5,7,9)=f_{d}(8 \mid 5,7,9)+1 \ldots
$$

- Two candidate alignments:

$$
\begin{aligned}
& f_{d}(8 \mid 5,7,9)=f_{d}(8 \mid 5,7,9)+1 / 2 \\
& f_{d}(8 \mid 6,7,9)=f_{d}(8 \mid 6,7,9)+1 / 2
\end{aligned}
$$

- But, the set of possible alignments grows very fast so we use Viterbi training rather than all possible alignments.

BASIC PHRASE-BASED TRANSLATION MODELS

1. Segment source S into phrases $S_{1} \ldots S_{N}$
2. Reorder each s_{i} according to distortion model
3. Translate each si according to phrasal translation model
[Och \& Ney 2004]

PHRASAL ALIGNMENTS

Maria no [dió una bofetada] a la | bruja verde |
| :--- |
| Mary did not |

PHRASAL ALIGNMENT TEMPLATES WITH GAPS

... would not like traveling
par chemin de fer

by railroad

HIERARCHICAL PHRASAL ALIGNMENT

he adores [listening [to music $\left.]_{j}\right]_{i}$
kare ha [[ongåku wo]j kiku]ino ga daisuki desu
[Knight \& Yamada 2001, Chiang 2005]

OPEN-SOURCE SOFTWARE

- EGYPT (CSLP/JHU 1999 team): IBM models I-V
- GIZA++ (Och \& Ney 2003): optimized IBM models
- MOSES (Koehn 2009): IBM model "VI" onward...

FURTHER READING

Kevin Knight. 1999. A statistical MT workbook. Ms., University of Southern California.

Philipp Koehn. 2010. Statistical Machine Translation. Oxford University Press.

Peter Brown, Vincent della Pietra, Stephen della Pietra, and Robert Mercer. 1993. The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics 19(2): 263-312.

