
Encoder-decoder sequence-to-sequence models

LING83600

1 Introduction: the problem of length
Many tasks in speech and language processing can be cast as mapping from an source sequence
X = x0, x1, . . . xn to an target sequenceY = y0, y1, . . . ym. When the two sequences are the same
length (i.e., n = m), then the task reduces to tagging. One merely extracts the features, either
using custom domain-specific feature extraction functions or using a recurrent neural network
(RNN), and then either

• greedily decodes the tag sequence left-to-right,

• uses an approximate decoding strategy like beam search, or

• decodes using conditional random fields (Lafferty et al. 2001).

In addition to part-of-speech tagging, named entity recognition, and similar tasks, this general
approach can also be used for contextual lemmatization: for each token xi the tag yi is a “pointer”
to a rewrite rule r such that r(xi) gives the ith lemma (Chrupała et al. 2008).

However, this is not the case for many interesting problems, including grapheme-to-phoneme
conversion, morphological generation, and machine translation. For all of these problems, the
relationship between input length n and output length m is complex and conditioned not just by
n but by the contents of the input sequence X.

Bibliographic note
This handout is based in part on unpublished slides by Roger Grosse and Jimmy Ba, as well as
the cited works.

2 Neural sequence models
In a neural sequence(-to-sequence) model, we observe the source sequence X = x1, x2, . . . , xn.
We then use some method—usually an RNN—to compute a real-valued “encoding” or “anno-
tation” of the source sequence Z ∈ Ra×n. Then, we use Z to generate the target sequence
Y = y1, y2, . . . , ym one element at a time. By convention, we add end-of-string symbols <eos> to
the end of the output sequence and halt decoding (i.e., output generation) whenever this symbol
is generated.



Figure 1: A simple neural sequence-to-sequence model, after Sutksever et al. 2014.

In the simplest form of this model (e.g., Sutksever et al. 2014), the prediction for yi is condi-
tioned by zn, the encoding at the end of the input sequence, and the previously generated outputs
y1, y2, . . . , yi−1. The model is said to be auto-regressive because it can “see” the encoding of its
previous predictions. This architecture is illustrated in Figure 1.

The major limitation of this simple architecture is that it forces the encoder portion of the
model—the part that produces encodings for the input symbols—to “stuff” all of the information
about the input sequence into a single vector zn, the encoding the RNN outputs at the end of the
input sequence. Furthermore, it does not have a mechanism to express the intuition that some
target word yi “translates” “aligns to”, or “covers” some source word xi, though we know this to
be true and could express this simple intuition even in all but the simplest statistical machine
translation (e.g. Brown et al. 1993).

3 The encoder-decoder model with attention
Bahdanau et al. (2015) and Luong et al. (2015) propose an alternative model. Their intuition is that
these alignments between source and target words are real and we simply need to learn which
source word(s) each target word aligns to. Like before, the decoder makes predictions one target
word at a time, and is fed encodings of its previous predictions. However, it also is fed a context
vector c computed by selectively “attending to” the encodings of one or more source words. The
context vector is assumed to be some kind of weighted sum of those embeddings, thus

c =
n∑

j=1

α i,jzj.

How are the attention weights α computed? The attention weight for target position i aligning to
source token j is given by concatenating the source encoding zj and the decoder state hi. This is
then run through a softmax (over j = 1, . . . , n− 1) so that the attention weights are a probability
distribution over source tokens. (This can be somewhat painfully converted to matrix form so it
can be computed efficiently by your GPU.) Crucially, the attention weights depend only on the
source and decoder encodings; they do not depend on source or target position. For instance,
we could imagine that the decoder is expecting an adjectives and we find this by looking for
adjective-like encodings in the source. This model is illustrated in Figure 2. Figure 3 shows an
example attention mask for a translation problem.



Figure 2: An encoder-decoder model with local attention, after Bahdanau et al. 2015.

Figure 3: Example attention masks for a translation task.



References
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by

jointly learning to align and translate. In ICLR.
Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The

mathematics of statistical machine translation: parameter estimation. Computational Linguis-
tics 19:263–311.

Chrupała, Grzegorz, Georgiana Dinu, and Josef van Genabith. 2008. Learning morphology with
Morfette. In Proceedings of the Sixth International Conference on Language Resources and Eval-
uation, 2362–2367.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random
fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning, 282–289.

Luong, Thang, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 1412–1421.

Sutksever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processsing Systems, 3104–3112.


	Introduction: the problem of length
	Neural sequence models
	The encoder-decoder model with attention

