
Text normalization

LING83600: Language Technology

Why I talk about this...

2

Written and spoken-domain language

Many speech and language technologies require a mapping between “written” and
“spoken” representations of language.

● In text normalization we map pseudo-ideographic representations like $4.20 to
pronounceable representations like four dollars and twenty cents.

● In transliteration we map from one orthographic code like スパゲッティ to another
like supagetti.

● In grapheme-to-phoneme conversion (or “g2p”) we map from an orthographic
code (e.g., tuviéramos) to a phonemic one like [tubieɾamos].

Text normalization

● Currency expressions: $4.20 → four dollars and twenty cents
● Date expressions: 11/2 → November second
● Letter sequences: WinNT → win n_letter t_letter
● Numbers: 69 → sixty nine
● Measure expressions: 12kg → twelve kilograms

Following Taylor (2009), we refer to these categories as semiotic classes, and their
conversion as text normalization.

Text normalization systems require some degree of linguistic sophistication.

A taxonomy of semiotic classes (Sproat et al. 2001)

Taxonomy of semiotic classes (Ebden & Sproat 2015)

● Cardinal: 69 → sixty nine
● Date: 11/2/1985 → November second nineteen eighty five
● Decimal: 23.3 → twenty three point three
● Electronic: kgorman@gc.cuny.edu → k gorman at gc dot cuny dot edu
● Fraction: 2/5 → two fifths
● Measure: 12kg → twelve kilograms
● Money: $5.96 → five dollars and ninety six cents
● Ordinal: 69th → sixty ninth
● Roman numeral: LIV → fifty four
● Telephone: 215-566-6123 → two one five, five six six, six one two three
● Time: 11:58 → eleven fifty eight

Taxonomy of semiotic classes (van Esch & Sproat 2017)

Taxonomy of semiotic classes (van Esch & Sproat 2017)

Taxonomy of semiotic classes (van Esch & Sproat 2017)

Taxonomy of semiotic classes (van Esch & Sproat 2017)

Wikipedia (“written” domain)

The giraffe has an extremely elongated neck, which can be up to 2 m (6 ft 7 in) in
length, accounting for much of the animal's vertical height. Each cervical vertebra is
over 28 cm (11 in) long. They comprise 52–54 percent of the length of the giraffe's
vertebral column, compared with the 27–33 percent typical of similar large
ungulates, including the giraffe’s closest living relative, the okapi.

Wikipedia (“spoken” domain)

The giraffe has an extremely elongated neck, which can be up to two meters (six feet
seven inches) in length, accounting for much of the animal's vertical height. Each
cervical vertebra is over twenty eight centimeters (eleven inches) long. They
comprise fifty two to fifty four percent of the length of the giraffe's vertebral column,
compared with the twenty seven to thirty three percent typical of similar large
ungulates, including the giraffe’s closest living relative, the okapi.

Wikipedia (“written” domain)

The giraffe has an extremely elongated neck, which can be up to 2 m (6 ft 7 in) in
length, accounting for much of the animal's vertical height. Each cervical vertebra is
over 28 cm (11 in) long. They comprise 52–54 percent of the length of the giraffe's
vertebral column, compared with the 27–33 percent typical of similar large
ungulates, including the giraffe’s closest living relative, the okapi.

Wikipedia (“spoken” domain)

The giraffe has an extremely elongated neck, which can be up to two meters (six feet
seven inches) in length, accounting for much of the animal's vertical height. Each
cervical vertebra is over twenty eight centimeters (eleven inches) long. They
comprise fifty two to fifty four percent of the length of the giraffe's vertebral column,
compared with the twenty seven to thirty three percent typical of similar large
ungulates, including the giraffe’s closest living relative, the okapi.

Applications of text normalization

● In text-to-speech synthesis (TTS), the front-end is responsible for providing
pronunciations for semiotic classes and out-of-vocabulary (OOV) words
○ This can then be fed into the back-end (e.g., WaveNet, or a parametric synthesizer)

● In automatic speech recognition (ASR):
○ The text used to train the language model are converted to spoken form
○ Spoken form outputs from the recognizer are converted back to written form so they can be

displayed to the user

● In information extraction (IE), verbalizations can be used as a canonical form for
spoken and the various written forms of dates, times, etc.

Prior work on “noisy text”

There is quite a bit of prior work focusing on novel abbreviations (e.g., cn u plz
hlp?) such as found in informal genres (e.g., microblogs, SMS).

But if you want to prepare text for downstream processing, there is little need to
verbalize number or measure phrases, but this is essential for speech applications.

We are interested in the semiotic categories most relevant to speech, and as such
are using text normalization in the original sense of the term (Sproat et al. 2001).

Text normalization is hard

Not all errors are equal:

● E.g., it may be acceptable to read plz → plaza when the context actually requires
it be read as please…

● But is definitely not acceptable to read 72 → four hundred seventy two

We refer to the latter kind of error as silly errors.

And some errors cannot really be handled without world knowledge: e.g., Dr.
Baltimore, MD → doctor baltimore maryland (?)

Machine learning for text normalization at Google

● Sentence boundary detection (Sproat & Hall 2014)
● English abbreviation expansion (Roark & Sproat 2014, Gorman et al. 2021)
● Grapheme-to-phoneme prediction (Jansche 2014, Rao et al. 2015, van Esch et al.

2016)
● Russian word stress prediction (Hall & Sproat 2013)
● Letter sequence prediction (Sproat & Hall 2014)
● Homograph disambiguation (Gorman, Mazovetskiy & Nikolaev 2018, Seale

2021)
● End-to-end research (Ng, Gorman, & Sproat, et al. 2017, Sproat & Jaitly 2017,

Zhang et al. 2019)

But...

Nearly all text normalization is done with hand-written language-specific grammars
(just as it was over 20 years ago: e.g., Sproat 1996).

Grammar-based systems are particularly interpretable, but require linguistic
sophistication and substantial development efforts to achieve acceptable
performance.

We need to support languages for which finding a literate, linguistically-sophisticated
native speaker-cum-software engineer is nigh impossible.

For speech tech, this is the major barrier to quality control and internationalization.

Minimally
supervised
number
normalization

Gorman, Kyle and Sproat, Richard. 2016. Minimally supervised number normalization. Transactions of
the Association for Computational Linguistics 4: 507-519.

Why numbers?

Nearly all semiotic classes contain numbers.

Therefore, when adding a new language, one of the first things we write is a number
grammar.

At the start of this project (late 2015), we had hand-written number grammars for
roughly 70 languages/locales.

These can be difficult to write: they require a linguistically sophisticated native
speaker (or a sophisticated linguist with high-quality reference materials).

Why this ought to work

It seems like, if I tell you that in French, 7 is sept, and 97 is quatre vingt dix sept, you
ought to know how to say 90, too.

Then, if I tell you that 8 is huit, you ought to know how to say 98, and so on.

Something ought to be able to learn to do this.

Similarly, the developmental literature on number cognition focuses on the
emergence of a successor function which gives you the (i + 1)th number.

Local outline

● Number normalization with recurrent neural networks and large amounts of
training data

● Number normalization with finite-state transducers and very small amounts of
training data

Noisy channel LSTM

A channel model consisting of four hidden feed-forward LSTM layers (two forwards,
two backwards) and a CTC output layer with softmax activation (cf. Rao et al. 2015)

Attention-based RNN

Four layer pyramidal encoder with 256 attentional units and a two-layer decoder
(Chan et al. 2016)

Data set

Large: 28,000 cardinal numbers extracted from several terabytes of Russian web text
using our production TTS front-end (Ebden & Sproat 2015)

Medium: 10,000 numbers randomly sampled (without replacement) from a modified
Yule-Simon distribution (10% held out for evaluation)

Small: 300 "curated" examples, consisting of [0, 200] and 99 large numbers

(NB: We will reuse the Medium and Small in later evaluations.)

Results

Training size LSTM accuracy Attention accuracy Overlap

28,000 .999 1.000 56%

9,000 .994 1.000 0%

300 < .001 < .001 < 1%

Error analysis

With the Medium and Large data sets, all errors are of the silly variety:

E.g., 9801:

девять тысяч семьсот один (Hypothesis)
nine thousand seven.hundred one

девять тысяч восемьсот один (Gold)
nine thousand eight.hundred one

With the Small data set, nothing of use is learned.

Hand-written number grammars

The traditional approach involves the composition of two components:

1. A language-specific factorization FST F:

97000 → 4 20 10 7 1000

2. A language-specific verbalization FST L:

4 20 10 7 1000 → quatre vingt dix sept mil

Verbalization FST L

Ignoring morphological concord, building L is trivial:

… ….
4 → quatre 60 → шестьдесят
7 → sept 60 → шестьдесяти
10 → dix 60 → шестьдесятью
20 → vingt ...
1e3 → mil
…

For languages like Russian, we use a finite-state language model to disambiguate.

Factorization FST F

This isn’t so clear: what's the hypothesis space?

Numeral bases (WALS #131)

Decimal 125

Hybrid vigesimal-decimal 22

Pure vigesimal 20

Other base 5

Extended body-part system 4

Restricted 20

http://wals.info/chapter/131

http://wals.info/chapter/131

(Brazilian) Portuguese: decimal

sete milhões quinhentos e quarenta e três mil
seven million five.hundred and forty and three thousand
= 7 x 1,000,000 + 500 + 40 + 3 x 1000 = 7,543,000

trezentos e vinte e um
three.hundred and twenty and one
= 300 + 20 + 1 = 321

Georgian: hybrid vigesimal-decimal

ots da tsamet'i
twenty and thirteen
= 20 + 13 = 33

ormots da tekvsmet'i
forty and sixteen
= 40 + 16 = 56

otkh- asi
four hundred
= 4 x 100 = 400

Other hybrid vigesimal-decimal

French:

quatre-vingt-dix-sept
four-twenty-ten-seven
= 4 x 20 + 10 + 7 = 97

Danish:*

halv-tred-sind-s-tyve
half-third-times-of-twenty
= (3 - ½) x 20 = 50

* This is an archaic/formal form; halvtreds is the informal one.

San Mateo Huave (Stairs Kreger & Scharfe de Stairs
1985:398-399): pure vigesimal

nimiow gajpowüw
twenty ten
= 20 + 10 = 30

ic miow
two twenty
= 2 x 20 = 40

piquiuw acoic miow
four five twenty
= 4 x 5 x 20 = 400

Ekari (Drabbe 1952:30): other base

èna ma gàati dàimita mutò
one and ten and sixty
= 1 + 10 + 60 = 71

Assamese: "South Asian" powers of ten

es 100

ek haajaa 1,000

dah haajaa 10,000

ek laakh 100,000

dah laakh 1,000,000

ek kooti 10,000,000

dah kooti 100,000,000

Addend flop (Sproat 2000:191)

German:

zwei hundert acht-und-neunzig
two hundred eight-and-ninety
= 2 x 100 + 8 + 90 = 298

Malagasy:

efatra amby valopolo sy eninjato sy telo arivo
four rest eighty and six.hundred and three thousand
= 4 + 80 + 6 x 100 + 3 x 1000 = 3,684

Kinyarwanda: multiplicand flop

mangana abiri na mirongo itatu
hundred two and ten three
= 100 x 2 + 10 x 3 = 230

igihumbi cumi na bibiri
thousand ten and two
= 1,000 x 10 + 2 = 12,000

Mandarin: creative use of zero

萬 零 五 十

10,000 0 5 10
= 10,000 + 0 + 5 x 10 = 10,050

Rare number operations

Latin: backcounting:

un-de-viginti
one-from-twenty
= 20 - 1 = 19

Welsh: multiplication by a half:

hanner cant a phedwar
half hundred and four
= ½ x 100 + 4 = 54

A universal grammar for number names (Hurford 1975)

● Additions of two or more integral addends...
● ...multiplication of two or integral addends...
● ...and occasional "flops", subtractions, etc.
● ...and morphological concord.

The expressions themselves are CFG-equivalent.

We just need to learn the rules and compile them.

Hurford, James. 1975. The linguistic theory of numerals. Cambridge: CUP.

Induction

Induction is made easier by the fact that we know the numeric denotation and the
relation is constrained by basic arithmetic.

Given training data of the form:

80 quatre vingt
97 quatre vingt dix sept

We induce a grammar G as follows.

Derivation of quatre-vingt-dix-sept

97

quatre vingt dix sept

Derivation of quatre-vingt-dix-sept

97

90 + 7 80 + 10 + 7 4 x 20 + 10 + 7 ...

quatre vingt dix sept

Derivation of quatre-vingt-dix-sept

97

90 + 7 80 + 10 + 7 4 x 20 + 10 + 7 ...

4 20 10 7

quatre vingt dix sept

Derivation of quatre-vingt-dix-sept

97

90 + 7 80 + 10 + 7 4 x 20 + 10 + 7 ...

4 + 20 + 10 + 7 4 x 20 + 10 + 7 4 + 20 x 10 + 7 ...

4 20 10 7

quatre vingt dix sept

Derivation of quatre-vingt-dix-sept

97

90 + 7 80 + 10 + 7 4 x 20 + 10 + 7 ...

4 + 20 + 10 + 7 4 x 20 + 10 + 7 4 + 20 x 10 + 7 ...

4 20 10 7

quatre vingt dix sept

Rule extraction

We extract syntactic rules from this intersection, which usually contains just one
analysis, to create a grammar G:

S → (7 | 10 | 4 | 20 | * | +)
* → 4 20
+ → * 10 7

Some ambiguities remain...

Putting it all together...

The grammar is realized as G, a pushdown transducer. Then our final model is:

F ⚬ M ⚬ G ⚬ L

F: language-universal factorization transducer
M: language-universal markup deletion transducer

Results
Locale Training size Accuracy Overlap

en_us 9,000 1.000 0%

300 1.000 < 1%

ka_ge 9,000 1.000 0%

300 1.000 < 1%

km_kh 9,000 1.000 0%

300 1.000 < 1%

ru_ru 28,000 1.000 56%

9,000 0.998 0%

300 0.998 < 1%

Error analysis

Fortunately, all remaining errors are of the non-silly variety.

E.g., 70477170:

семьдесят миллион … (Hypothesis)
seven.hundred million.nom.sg. …

семьдесят миллионов … (Gold)
seven.hundred million.gen.pl. ...

Roll-out

A Google linguist (supported by native annotators, program managers, and code
reviewers) can create roughly one number grammar per day.

We have created number grammars for more than 100 languages using the method.

We continue squash bugs and expand our covering grammars.

Local summary

Two models for number normalization:

● Recurrent neural networks with minimal domain knowledge but substantial
supervision

● A cascade of induced finite-state transducers with considerable domain
knowledge but minimal supervision

Subsequent work (Ritchie et al. 2019)

● Generalizations of the covering grammars
● UniNum: an open-source number-name database with entries for 186 languages,

locales, and scripts.

Improving
homograph
disambiguation
with machine
learning

Gorman, Kyle, Mazovetskiy, Gleb, and Nikolaev, Gleb.2018. Improving homograph disambiguation with machine learning.
In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, pages 1349-1352.

Homographs are words that are pronounced differently depending on the intended
sense, e.g.:

read [ɹiːd] (present tense) and read [ɹɛd] (past tense).
lead [liːd] (show the way) and lead [lɛd] (metal).

● Not merely polysemous: bank has multiple senses but only one pronunciation.
● Not just pronunciation variation: the can be realized as [ðə] or [ðiː] depending on

context and degree of emphasis, but there's no semantic distinction.

What is a homograph?

Importance for TTS

Humans are extremely sensitive to errors in homographs disambiguation.

Homographs are very common in certain languages. E.g., in English, ≈5% of the
words in Google TTS requests (as of 2017) are homographs.

Homographs are also a very common source of bugs in the TTS system itself: #2 in
English, #1 in Russian.

Homograph taxonomy

Morphosyntactic homographs: morphosyntactic distinctions not indicated in the
orthography; e.g., abuse, read.

Lexical homographs: accidental overlap in the spelling of semantically unrelated
lexemes; e.g., bow, sake.

Mixed homographs: morphosyntactic distinctions accompanied by semantic
distinctions; e.g., consummate, produce.

This cuts across a traditional distinction between those homographs which can be
disambiguated on the basis of part of speech and those which cannot.

Rule-based homograph disambiguation

1. wind followed by up or down is wind_vrb [waɪnd].
2. wind preceded by strong is wind_nou [wɪnd].

Rule types

● Context (words before / after)
● Substring / regex
● Morphosyntax / POS / proper noun
● Geolocation match
● Default

Only the first matching rule is applied.

Pros and cons

Pros:

● Rules are expressive and can describe anything you can compute
● Rules are interpretable
● Rules support simple "point fixes" easy

Cons:

● Rules are expensive to write and maintain
● Writing rules for lexical homographs can be difficult (e.g., bow)
● Many edge cases

Example

winds:

winds_nou: [wɪndz]
winds_vrb: [waɪndz]

Rules:

● If the following word is up or down, resolve to winds_vrb.
● Default: winds_nou.

"Today, there will be winds up to 30 mph."

Our approach

Much prior work (Hearst 1991; Sproat et al. 1992; Yarowsky 1997, Silva et al. 2012):

● Identify candidate contextual cues
● Compute log-odds, log-likelihoods, etc. for these cues
● Build a decision list
● Prune (via cross-validation, subsumption, etc.)

Our approach:

● Identify candidate contextual cues
● Discriminatively train regularized classifiers with these cues as features

Baseline features: context words

Context unigrams, bigrams, and skipgrams. E.g.:

"In 1995 I read Lord of the Rings."

ɸ
w
 = { WL2:<DATE>, WL1:i, WR1:lord, WR2:of,

 WL2:<DATE>_WL1:i, WR1:lord_WR2:of, WL1:i_WR1:lord }

Note that we use equivalence classes for context semiotic classes tokens.

Baseline features: target POS tag

POS tag on the target homograph. E.g.:

"In 1995 I read Lord of the Rings."

ɸt = { WT=VBN }

The POS tagger does not currently run on embedded engines (those that run on
mobile devices which cannot quickly connect to the WAN) so this feature is inactive
there.

Baseline features: target capitalization

Unicode capitalization category for the target homograph (Sproat et al. 1992).

"In 1995 I read Lord of the Rings."

ɸc = { C=lower }

Inference

Extracts features then assigns the most probable resolution.

At runtime, we just need to compute, for each word ID i:

argmaxx wx · ɸ = argmaxx ∑i wx,i ɸi

Training

Multinomial* log-linear ("maxent") model, used for other classification and ranking
tasks in the TTS front-end (Hall & Sproat 2013, Sproat & Hall 2014).

We use gradient descent with the FTRL optimizer, L1 regularization, and Vizier
(Golovin et al. 2017) for hyperparameter tuning.

We train separate models for each homograph.

*Why multinomial? There may be more than two word IDs per homograph.

Model hybridization

Two ways to incorporate ML:

● Delete all rules and just use the ML model.
● Allow existing rules to pre-empt the ML model (i.e., treat the ML prediction as the

default rule).

Initial data collection

We identified a set of roughly 200 (now whittled down to 163) en_us homographs
for targeted annotation.

Then, we randomly sampled 200 sentences per homograph from English Wikipedia
which contained them, then manually filtered these down to 100 per homograph.

Annotation crowd-sourced internally to native speakers, 3 annotations per
homographs, conflicting annotations resolved by linguists.

This high-quality dataset of ≈16,000 examples is freely available.

Baseline evaluation

Micro-accuracy Macro-accuracy

MAP baseline .850 .849

Embedded: rules .869 .863

Server: rules .893 .890

Held-out evaluation (90%/10%)

Micro-accuracy Macro-accuracy

Embedded: rules .870 .867

Server: rules .890 .886

Embedded: ML .926 .924

Server: ML .954 .951

Embedded: rules + ML .990 .990

Server: rules + ML .990 .990

Error analysis

Morphosyntactic homographs like read are more challenging than lexical
homographs like bass, and this primarily accounts for the server/embedded
disparity.

Still many POS tag errors in sentences like "Smith has played Trophy matches for the
county from 1993 to present." These cause some downstream errors.

Subsequent work (Seale 2021)

● Manual error correction of the Gorman et al. data
● Experiments with various "muppet" transformer models
● Projecting weakly-labeled training data using MT alignments:

E.g., in Russian bass is translated as either бас 'bass (music part or instrument)'
and окунь 'perch', depending on sense.

● Projecting weakly-labeled training data using ASR alignments:

E.g., if the recognizer says that the word was pronounced as [bæs], it is probably
the fish sense, not the music sense.

Structured
abbreviation
expansion in
context

Gorman, Kyle, Kirov, Christo, Roark, Brian, and Sproat, Richard. 2021. Structured abbreviation expansion
in context. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 995-1005.

Motivations

Text normalization, transformations to prepare text for downstream processing
(particularly speech recognition or synthesis), requires the handling of abbreviations,
among other semiotic classes.

High-frequency, highly-conventionalized abbreviations (e.g., mL, lbs, AK, NZ) are often
expanded using hand-written grammars, possibly augmented with machine learning
for contextual disambiguation.

We are instead interested in infrequent, non-conventionalized ad hoc abbreviations,
common on communication channels which favor brevity.

78

Trajan's column (113 CE)
[Image credit: Britannica]

https://www.britannica.com/topic/Trajans-Column

[Image credit: Wikipedia]

https://en.wikipedia.org/wiki/File:Trajan_inscription_duotone.jpg

Prior work

Abbreviation expansion has been studied using data from SMS, chatrooms, and
social media platforms such as Twitter.

Most of these studies use small, manually curated data sets in which the "ground
truth" is produced by annotators asked to expand abbreviations using local context.

However, Baldwin et al. (2015) report that this annotation task produces poor
inter-annotator agreement.

And, unfortunately, nearly all of the publicly-released data sets are no longer
available, perhaps for licensing reasons.

Data collection

We produce an unencumbered data set using a task in which annotators generate
(rather than disambiguate) abbreviated text.

● Sentences are extracted from English-language Wikipedia pages.
● A character LM is used to rank the sentences on per-character entropy, and

sentences from the middle of the distribution are sampled for annotation.
● Annotators are asked to shorten the sentences by at least 20 characters.
● Exploratory analysis of annotators' abbreviation expansion strategies broadly

accords with our intuitions about English.
● A separate team of annotators were able to disambiguate the abbreviated text

with a high degree of accuracy.

Task definition

Let A = [a0, a1, …, an] be an n-length sequence of possibly-abbreviated words.

Let E = [e0, e1, …, en] be an n-length sequence of expanded words.

If ei is an element of E, then it is either:

not an abbreviation: ai is identical to ei, or
an abbreviation: ai is a proper (non-null) subsequence of ei.

This limits us to what Pennell & Liu (2010) call deletion-based abbreviation.

This yields a highly-tractable task definition, which can be relaxed in future work.

Hmm, getting a strong
"noisy channel" vibe

here...

85

Finite-state pipeline

The finite-state pipeline is defined by two weighted finite state automata:

● P(E): a language model, defining a probability distribution over expansions
● P(ai, ei): a pair n-gram model, defining the joint probability over

abbreviation/expansion string pairs, estimated with an online, batched Viterbi
training variant of expectation maximization.

These models are fused to assemble a lattice of candidate expansions and decoded
via the shortest path algorithm.

87

th rsn i went to the str ws to buy mlk and brd .

Neural pipeline

The neural pipeline substitutes an LSTM language model for the expansion model.
We also added some heuristics to the generation of expansion candidates:

● LexBlock: If ai is in-vocabulary, set the probability of non-faithful expansion
candidates to zero.

● Memory: do not prune candidate ei if it occurs as an expansion of ai in the
training set.

● SubBlock: if candidate ei is a contiguous substring of another candidate ei', set
the probability of the superstring candidate to zero.

These models are fused and decoded via left-to-right approximate beam search.

Held-out evaluation (80%/10%/10%)

WER OER UER IER

n-gram LM, pair LM 2.90 0.00 2.13 4.08

LSTM LM, pair LM 1.41 0.39 0.19 2.35

LSTM LM, subseq. 1.12 0.40 0.20 1.74

Human topline 3.51 2.23 0.30 4.88

Error analysis

● Roughly 40% of errors are "harmful":
○ the {clases, ✓ classes, ✗ clashes} cntinud nd th band strugld fr time to rite tgthr
○ anothr criticism is abt th absenc o a stndrd {auditin, ✓ auditing, ✗ audition} procedr .

● American vs. British spellings (both are present in Wikipedia):
○ consequently th village hs develpd a mor suburbn role than som o its {neighbrs, ✓ neighbours, ✗

neighbors}

● Morphologically related expansions:
○ they {recog, ✓ recognized, ✗ recognize} accomps by musicians frm th prev yr .

● Syntactically-similar expansions:
○ {th, ✓ the, ✗ this} behavr s strengthnd by an automatc reinfrcng consequenc .

Future work

● Relax the restriction to deletion-based abbreviation
● Experiment with more powerful language models
● Survey abbreviation strategies in languages beyond English

End-to-end
research

Generalized text normalization with covering grammars

Ng, Gorman & Sproat (2017) perform text normalization on English and Russian
using finite-state covering grammars (including the number grammars induced with
the method just described) and a log-linear ranker to select the best verbalization.

Sproat & Jaitly (2017) and Zhang et al. (2019) perform text normalization on English
and Russian using an RNN; the system achieves acceptable performance only when
it is constrained using finite-state covering grammars. Similar findings were obtained
in a Google-sponsored Kaggle competition (2017).

Recent work from Apple Inc. (Pusateri et al. 2017) describes the Siri inverse text
normalization system, treating this as a tagging problem with a very rich tag set that
might be understood as a sort of covering grammar.

Number data:
https://github.com/google-research-datasets/uninum

Homograph data:
https://github.com/google-research-datasets/WikipediaHomographData

Abbreviation data:
https://github.com/google-research-datasets/WikipediaAbbreviationData

End-to-end data:
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/text-normalization-challenge-russian-language

https://github.com/google-research-datasets/uninum
https://github.com/google-research-datasets/WikipediaHomographData
https://github.com/google-research-datasets/WikipediaAbbreviationData
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/text-normalization-challenge-russian-language

