LING82100: homework 7 solution

```
> d <- read.csv(
+ "http://wellformedness.com/courses/LING82100/Data/NYC.csv"
+ )
> contrasts(d$store) <- contr.sum
> contrasts(d$word) <- contr.sum
> contrasts(d$emphasis) <- contr.sum
> r <- glm(r ~ store + word + emphasis, data = d, family = binomial)
```


1 Estimated means

```
> intercept <- -0.93588
> coef.kleins <- -1.34852 # The effect thereof.
> coef.macys <- 0.45423 # The effect thereof.
> coef.saks <- -(coef.kleins + coef.macys)
> means <- c(kleins = plogis(intercept + coef.kleins),
+ macys = plogis(intercept + coef.macys),
+ saks = plogis(intercept + coef.saks))
> print(round(means, 2))
kleins macys saks
    0.09 0.38 0.49
```

The estimated means are shown in Table 1.

2 Post-hoc tests

```
> library(multcomp)
```

> pairs <- glht(r, linfct = mcp(store = "Tukey"))

	$P(r)$
S. Klein's	.09
Macy's	.38
Saks 5th Ave.	.49

Table 1: Estimated mean (r)-use for the three department stores.

```
> summary(pairs)
    Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: glm(formula = r ~ store + word + emphasis, family = binomial,
        data = d)
Linear Hypotheses:
        Estimate Std. Error z value Pr(>|z|)
Macy's - Klein's == 0 1.8028 0.2617 6.890 <1e-04 ***
Saks - Klein's == 0 2.2428 0.2820 7.954 <1e-04 ***
Saks - Macy's == 0 0.4400 0.1950 2.256 0.0604 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
```

The Tukey HSD test was used to perform post-hoc comparisons of (r) use in the three different department stores. We obtain significant effects of S. Klein's $<$ Macy's ($p<.001$) and S. Klein's $<$ Saks 5th Ave. ($p<.001$); the difference between Macy's and Saks was non-significant ($p=.060$).

