LING82100: midterm solution

1 Experimental design

This study is a *quasi-experiment* because children are not randomly assigned to particular diagnostic groups; they either already have, or do not have, a developmental disorder—it is not under experimenter control; for this reason, it is also necessarily a *between-subjects* design. The *dependent variable* is number of phoneme errors. *Independent variables* are diagnostic group, and number of syllables in the target nonsense words.

2 Standard error and confidence intervals

- S.E. $=\frac{s}{\sqrt{n}}=.078$
- 95% CIs = $\bar{X} \pm 1.96$ S.E. = [1.628, 1.932]

3 Null hypothesis significance testing

This is a significant result: the *p*-value is lower than the α -level, so we reject the null hypothesis. In the case that there is no population difference, this is a type I error, since we falsely reject a true null hypothesis.

4 Power analysis

The following increase the power of the test:

- Increasing the effect size
- Increasing the sample sizes

Decreasing the α -level **decreases** the power of the test.

5 Reporting test results

5.1 Fisher exact test

The results of a Fisher exact test (odds ratio = 0.047, two-sided p = .005) are significant at α = .01, leading us to reject the null hypothesis that there is no association between criminal conviction and zygoticity.

5.2 Welch *t*-test

The results of a Welch unequal variance two-sample *t*-test (t(97.9) = -3.210, p = .002) are significant at $\alpha = .01$, leading us to reject the null hypothesis that there are no differences between the sepal widths of *I. versicolor* ($\bar{X} = 2.77$) and *I. virginica* ($\bar{X} = 2.97$).

5.3 Kendall τ_b test

The results of Kendall's τ_b test ($\tau = -.193$, p = .205) are non-significant at $\alpha = .01$; we fail to reject the null hypothesis that there is no correlation between degree of clausal embedding and welformedness rating.