The binomial test

A preview of (almost) everything
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All the possible outcomes for 4 tosses of a coin



Distribution of frequencies:
Binomial distribution, with p(Head) = 0.5
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The binomial distribution

Let:

» n (or N): number of dichotomous
("Bernoulli”) trials

« X: number of successful trials

» p: probability of a successful trial

Then the probability of obtaining exactly x
successful trials is given by:
> choose(n, x) *

p’x (1 - p) (n - x)



Introducing dbinom

> dbinom (0, size = 4, prob = .5)
[1] 0.0625

> dbinom(1l, size = 4, prob = .5)
[1] 0.25

> dbinom (2, size = 4, prob = .5)
[1] 0.375

> dbinom (3, size = 4, prob = .5)
[1] 0.25

> dbinom (4, size = 4, prob = .5)

[1] 0.0625



Introducing pbinom

> pbinom (0, size = 4, prob = .5)
[1] 0.0625
> pbinom(1l, size = 4, prob = .5)
[1] 0.3125
> pbinom (2, size = 4, prob = .5)
[1] 0.6875
> pbinom (3, size = 4, prob = .5)
[1] 0.9375
> pbinom(4, size = 4, prob = .5)

[1] 1



Binomial Probabilities for P = .5

N = total number oI s=vents
X = number of ewvents of one particular type (e.g., heads)
P (X) = prokb that the number of events of this type is exactly X
P (<=X) = prok that the number of events of this type is less than or egual to X
N x e((X) p(<=X) N X e((X) p(<=X) N x p(X) p(<=X)
1 ju C.500 0.500 =] ju 0.002 0.002 13 o c.000 0.000
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=] < O.1649 0D.910 13 (=) 0.209 0.500
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11 1 c.00S 0.00¢€ 14 = 0.122 0.910
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The sign test

Do infants distinguish between their mother’s voice and that of another adult
female?

Nine infants were tested to see how much time they would spend looking at a
loud-

speaker playing their mother’s voice or that of another woman. Here are the
hypothetical data in seconds of looking time:

Infant: e f I

a b c d g _h Discard
Mother'svoice 5 7 4 2 5 5 FW\HQS
Othersvoice 3 6 5 2 4 4 6 5 3
Sign + + - tie + + + + +
(Heads & Tails: [H] [H

1 [T] FH] [H] [H] [H][H])
H,: equally likely to have + or —. N
> pbinom(1, size = 8, prob = .5) _, -tLUJUu -

[1] 0.03515625 e
2-tailed =p(numberof -‘'s<1) + p(humberof+'s<1)
= 035 + .035 m t U
_ _m
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The probability is the product of probabilities of
the individual tosses; e.qg., .4 x .4 x .4 x 4.



Comparing two binomials

With p = .5: With p = .6:
> dbinom (0, 4, .5) > dbinom (0, 4, .6)
[1] 0.0625 [1] 0.0256
> dbinom(1l, 4, .5) > dbinom (1, 4, .6)
[1] 0.25 [1] 0.1536
> dbinom(2, 4, .5) > dbinom (2, 4, .6)
[1] 0.375 [1] 0.3456
> dbinom (3, 4, .5) > dbinom (3, 4, .6)
[1] 0.25 [1] 0.3456
> dbinom(4, 4, .5) > dbinom(4, 4, .6)

[1] 0.0625 [1] 0.1296



Binomial Distribution with p = 0.6
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The mean is given by Np =4 x .6 = 2.4H1.6T. When p #
0.5, the distribution is skewed, but skew decreases as
N increases.



Binomial distributions for larger N

Binomial Distribution n =48 and p = 0.25
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Rule of thumb: If p # 0.5 and Np(1 - p) =9, then the
normal distribution approximates the binomial.



From sample to population

We:

« observe a sample of n Bernoulli trials with
x outcomes of one type, and

« calculate a statistic p, the proportion of
outcomes of that one type in the sample
such that p = x / n, then

* given this sample, compute a range of

likely values for the population parameter
p, i.e., a confidence interval.



From population to sample

We:

» hypothesized the parameter p, the
probability of an outcome of a particular
type in a binomial population,

« observed a sample of n Bernoulli trials
with x outcomes of that type, and

» calculated the probability that the sample
came from that binomial population.
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Based on the sample proportion (8 / 16 = .5), we would expect,
with 95% confidence, that the value of the population proportion
lies between4 /16 =.25and 12/ 16 =.75.



Introducing binom. test

> binom.test (8, 16, .5)
Exact binomial test

data: 8 and 16
number of successes = 8, number of trials = 16, p-value =
1
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.2465101 0.7534899
sample estimates:

probability of success

0.5



Introducing binom. test

> binom.test (3, 16, .5)
Exact binomial test

data: 3 and 16

number of successes = 3, number of trials = 16, p-value =
0.02127

alternative hypothesis: true probability of success is not
equal to 0.5

95 percent confidence interval:
0.04047373 0.45645655

sample estimates:

probability of success

0.1875
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outside the 95% confidence interval,/so there
is less than a 5% chance that the population
value is 0.5.
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Testing a null hypothesis (H )

+ Often H, is the hypothesis of “no
difference”, but in principle, it can be any
hypothesis.

* We reject H,, if the model it specifies does
not fit our data well, i.e., if the mismatch
between the data and the model is
unlikely to be due simply to chance
(sampling error).




Testing a null hypothesis (H )

- Alternatively, we can construct a
confidence interval based on the sample,
and if the H, value does not fall within
that interval, we reject H,,

» If H, is not rejected on the basis of the
available evidence, we have not proven
that it's true; it may be that the difference
between the model and sample are
washed out by sampling error.



Statistical significance

- Statistical significance means that the
probability that the H, model assigns to
the data is less than a small,
arbitrarily-chosen a (alpha), often .05 or
.01 by convention.

- Statistical significance is not a "gradable”
quality.



Some applications of the
binomial test (1/)

1 group, 1 dichotomous measure per
participant; e.g., do Columbus residents
have a preference for [str] vs. [[tr]?

1 group, 1 interval measure per participant
(sign test): Take the difference between
each measure and a hypothesized
population value and use the signs of the
differences; e.g., do male speakers of a
dialect have f, that differs from that of the
standard dialect?



Some applications of the
binomial test (2/)

1 group, 1 interval measure per participant
(sign test): Take the difference between
each measure and a hypothesized
population value and use the signs of the
differences; e.g., do male speakers of a
dialect have f, that differs from that of the
standard dialect?



Some applications of the
binomial test (3/)

1 group, 2 interval measures per
participant (sign test); take the difference
between each pair of measures and use
the signs of the differences; e.qg., do
infants’ looking times differ for mother’s

vs. other’s voice?



Null hypothesis testing errors

y Ter |. Rejecting the null hypothesis when it
should not be rejected (i.e., there really is no
difference)

— probability of Type | error (a):
- the critical value of the test statistic
- smaller a-> wider Cl -> fewer rejections of H,

» Type IlI: Not rejecting the null hypothesis
when it should be rejected (i.e., there really is
a difference)

— probability of Type Il error (B):

* Reduced by increasing n
- Reduced by increasing effect size




Effect size

Effect size is simply a measure of the
magnitude of the observed difference.

* For the binomial, one way to measure effect
size is by means of the odds of one

outcome
- |f we toss a coin 4 times and the results are
3H1T, then the odds of headsare3:1=3/1.
« NB: effect size does not reflect sample size.

- If we toss a coin 40 times and the results are
30H10T, then the odds of heads are the same.



Even small effect sizes can be
significant with large samples

> binom.test (51, > binom.test (5100,
100, .5)3Sp.value 10000, .5) sp.value

[1] 0.9204108 [1] 0.04658553



The problem with null
hypothesis significance testing

Every non-directional null hypothesis is false.

« Zero effects are practically impossible
when scores are continuously valued and
measured with sufficient precision.

 Given enough data, even a miniscule
effect size could be shown to be
statistically significance.



The solution

Therefore, we report:
+ effect sizes
» confidence intervals

in addition to significance and the
associated p-value.

Alternatively, we can turn to Bayesian
approaches...



Binomial test assumptions

- Samples can be sorted into two exhaustive,
mutually exclusive categories.

» Every sample is independent of every other
event.

« The population parameter p is fixed/cannot
change during sampling.

In summary: the data consists of dichotomous

random variables which are independently and

identically distributed (i.i.d).



