The binomial test

A preview of (almost) everything

Is the coin fair?

All the possible outcomes for 4 tosses of a coin

Distribution of frequencies: Binomial distribution, with $p($ Head $)=0.5$

The binomial distribution

Let:

- n (or N): number of dichotomous ("Bernoulli") trials
- x : number of successful trials
- p: probability of a successful trial

Then the probability of obtaining exactly x successful trials is given by:

$$
\begin{aligned}
& >\operatorname{choose}(n, x) \text { * } \\
& \\
& p^{\wedge} x(1-p)^{\wedge}(n-x)
\end{aligned}
$$

Introducing d.binom

> dbinom(0, size = 4, prob = .5)
[1] 0.0625
> dbinom(1, size = 4, prob = .5)
[1] 0.25
> d.binom(2, size $=4$, prob = .5)
[1] 0.375
> dbinom(3, size $=4$, prob = .5)
[1] 0.25
> dbinom(4, size = 4, prob = .5)
[1] 0.0625

Introducing pbinom

> pbinom(0, size = 4, prob = .5)
[1] 0.0625
> pbinom(1, size $=4$, prob = .5)
[1] 0.3125
> pbinom(2, size $=4$, prob $=.5)$
[1] 0.6875
> pbinom(3, size $=4$, prob $=.5)$
[1] 0.9375
> pbinom(4, size $=4$, prob = .5)
[1] 1

Binomial Probabilities for $P=.5$
$N=$ total number of events
$\mathrm{X}=$ number of events of one particular type (e.g.. heads)
$p(X)=p r o b$ that the number of events of this type is exactly X
$p(<=X)=p r o b$ that the number of events of this type is less than or equal to X

N	X	$p(X)$	$p(<=X)$
1	0	0.500	0.500
1	1	0.500	1.000
2	0	0.250	0.250
2	1	0.500	0.750
2	2	0.250	1.000
3	0	0.125	0.125
3	1	0.375	0.500
3	2	0.375	0.875
3	3	0.125	1.000
4	0	0.063	0.063
4	1	0.250	0.313
4	2	0.375	0.688
4	3	0.250	0.938
4	4	0.063	1.000
5	0	0.031	0.031
5	1	0.156	0.188
5	2	0.313	0.500
5	3	0.313	0.813
5	4	0.156	0.969
5	5	0.031	1.000
6	0	0.016	0.016
6	1	0.094	0.109
6	2	0.234	0.344
6	3	0.313	0.656
6	4	0.234	0.891
6	5	0.094	0.984
6	6	0.016	1.000
7	0	0.008	0.008
7	1	0.055	0.063
7	2	0.164	0.227
7	3	0.273	0.500
7	4	0.273	0.773
7	5	0.164	0.938
7	6	0.055	0.992
7	7	0.008	1.000
8	0	0.004	0.004
8	1	0.031	0.035
8	2	0.109	0.145
8	3	0.219	0.363
8	4	0.273	0.637
8	5	0.219	0.855
8	6	0.109	0.965
8	7	0.031	0.996
8	8	0.004	1.000

N	X	$p(X)$	$p(<=X)$	N	X	$p(X)$	$p(<=x)$
9	0	0.002	0.002	13	0	0.000	0.000
9	1	0.018	0.020	13	1	0.002	0.002
9	2	0.070	0.090	13	2	0.010	0.011
9	3	0.164	0.254	13	3	0.035	0.046
9	4	0.246	0.500	13	4	0.087	0.133
9	5	0.246	0.746	13	5	0.157	0.291
9	6	0.164	0.910	13	6	0.209	0.500
9	7	0.070	0.980	13	7	0.209	0.709
9	8	0.018	0.998	13	8	0.157	0.867
9	9	0.002	1.000	13	9	0.087	0.954
				13	10	0.035	0.989
10	0	0.001	0.001	13	11	0.010	0.998
10	1	0.010	0.011	13	12	0.002	1.000
10	2	0.044	0.055	13	13	0.000	1.000
10	3	0.117	0.172				
10	4	0.205	0.377	14	0	0.000	0.000
10	5	0.246	0.623	14	1	0.001	0.001
10	6	0.205	0.828	14	2	0.006	0.006
10	7	0.117	0.945	14	3	0.022	0.029
10	8	0.044	0.989	14	4	0.061	0.090
10	9	0.010	0.999	14	5	0.122	0.212
10	10	0.001	1.000	14	6	0.183	0.395
				14	7	0.209	0.605
11	0	0.000	0.000	14	8	0.183	0.788
11	1	0.005	0.006	14	9	0.122	0.910
11	2	0.027	0.033	14	10	0.061	0.971
11	3	0.081	0.113	14	11	0.022	0.994
11	4	0.161	0.274	14	12	0.006	0.999
11	5	0.226	0.500	14	13	0.001	1.000
11	6	0.226	0.726	14	14	0.000	1.000
11	7	0.161	0.887				
11	8	0.081	0.967	15	0	0.000	0.000
				15	1	0.000	0.000
11	9	0.027	0.994	15	2	0.003	0.004
11	10	0.005	1.000	15	3	0.014	0.018
11	11	0.000	1.000	15	4	0.042	0.059
				15	5	0.092	0.151
12	0	0.000	0.000	15	6	0.153	0.304
12	1	0.003	0.003	15	7	0.196	0.500
12	2	0.016	0.019	15	8	0.196	0.696
12	3	0.054	0.073	15	9	0.153	0.849
12	4	0.121	0.194	15	10	0.092	0.941
12	5	0.193	0.387	15	11	0.042	0.982
12	6	0.226	0.613	15	12	0.014	0.996
12	7	0.193	0.806	15	13	0.003	1.000
12	8	0.121	0.927	15	14	0.000	1.000
12	9	0.054	0.981	15	15	0.000	1.000

The sign test

Do infants distinguish between their mother's voice and that of another adult female?
Nine infants were tested to see how much time they would spend looking at a loud-
speaker playing their mother's voice or that of another woman. Here are the hypothetical data in seconds of looking time:

Is the coin fair?

The probability is the product of probabilities of the individual tosses; e.g., . $4 \times .4 \times .4 \times .4$.

Comparing two binomials

With $p=.5$:
> dbinom(0, 4, .5)
[1] 0.0625
> dbinom(1, 4, .5)
[1] 0.25
> dbinom(2, 4, .5)
[1] 0.375
> dbinom(3, 4, .5)
[1] 0.25
> dbinom(4, 4, .5)
[1] 0.0625

With $p=.6$:
> dbinom(0, 4, .6)
[1] 0.0256
> dbinom(1, 4, .6)
[1] 0.1536
> dbinom(2, 4, .6)
[1] 0.3456
> dbinom(3, 4, .6)
[1] 0.3456
> dbinom(4, 4, .6)
[1] 0.1296

Binomial Distribution with $p=0.6$

The mean is given by $N p=4 \times .6=2.4 \mathrm{H} 1.6 \mathrm{~T}$. When $p \neq$ 0.5 , the distribution is skewed, but skew decreases as N increases.

Binomial distributions for larger N

Binomial Distribution $\mathrm{n}=48$ and $\mathrm{p}=0.25$

Rule of thumb: If $p \neq 0.5$ and $N p(1-p) \geq 9$, then the normal distribution approximates the binomial.

From sample to population

We:

- observe a sample of n Bernoulli trials with x outcomes of one type, and
- calculate a statistic p, the proportion of outcomes of that one type in the sample such that $p=x / n$, then
- given this sample, compute a range of likely values for the population parameter p, i.e., a confidence interval.

From population to sample

We:

- hypothesized the parameter p, the probability of an outcome of a particular type in a binomial population,
- observed a sample of n Bernoulli trials with x outcomes of that type, and
- calculated the probability that the sample came from that binomial population.

Binomial Distribution $\mathrm{n}=16$ and $\mathrm{p}=\mathrm{x} / \mathrm{n}=8 / 16=0.5$

Based on the sample proportion (8/16 = .5), we would expect, with 95% confidence, that the value of the population proportion lies between $4 / 16=.25$ and $12 / 16=.75$.

Introducing binom.test

> binom.test(8, 16, .5)

> Exact binomial test
data: 8 and 16
number of successes $=8$, number of trials $=16$, p-value $=$ 1
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.24651010 .7534899
sample estimates:
probability of success

$$
0.5
$$

Introducing binom.test

> binom.test(3, 16, .5)
Exact binomial test
data: 3 and 16
number of successes $=3$, number of trials $=16$, p-value $=$ 0.02127
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.040473730 .45645655
sample estimates:
probability of success

$$
0.1875
$$

Binomial Distribution $\mathrm{n}=16$ and $\mathrm{p}=\mathrm{x} / \mathrm{n}=3 / 16=0.1875$

Testing a null hypothesis $\left(H_{0}\right)$

- Often H_{0} is the hypothesis of "no difference", but in principle, it can be any hypothesis.
- We reject H_{0} if the model it specifies does not fit our data well, i.e., if the mismatch between the data and the model is unlikely to be due simply to chance (sampling error).

Testing a null hypothesis $\left(H_{0}\right)$

- Alternatively, we can construct a confidence interval based on the sample, and if the H_{0} value does not fall within that interval, we reject H_{0}.
- If H_{0} is not rejected on the basis of the available evidence, we have not proven that it's true; it may be that the difference between the model and sample are washed out by sampling error.

Statistical significance

- Statistical significance means that the probability that the H_{0} model assigns to the data is less than a small, arbitrarily-chosen a (alpha), often . 05 or .01 by convention.
- Statistical significance is not a "gradable" quality.

Some applications of the binomial test (1/)

- 1 group, 1 dichotomous measure per participant; e.g., do Columbus residents have a preference for [str] vs. [[tr]?
- 1 group, 1 interval measure per participant (sign test): Take the difference between each measure and a hypothesized population value and use the signs of the differences; e.g., do male speakers of a dialect have f_{0} that differs from that of the standard dialect?

Some applications of the binomial test (2/)

- 1 group, 1 interval measure per participant (sign test): Take the difference between each measure and a hypothesized population value and use the signs of the differences; e.g., do male speakers of a dialect have f_{0} that differs from that of the standard dialect?

Some applications of the binomial test (3/)

- 1 group, 2 interval measures per participant (sign test); take the difference between each pair of measures and use the signs of the differences; e.g., do infants' looking times differ for mother's vs. other's voice?

Null hypothesis testing errors

- Type I: Rejecting the null hypothesis when it should not be rejected (i.e., there really is no difference)
- probability of Type I error (a):
- the critical value of the test statistic
- smaller a -> wider Cl -> fewer rejections of H_{0}
- Type II: Not rejecting the null hypothesis when it should be rejected (i.e., there really is a difference)
- probability of Type II error (β):
- Reduced by increasing n
- Reduced by increasing effect size

Effect size

Effect size is simply a measure of the magnitude of the observed difference.

- For the binomial, one way to measure effect size is by means of the odds of one outcome
- If we toss a coin 4 times and the results are 3 H 1 T , then the odds of heads are $3: 1=3 / 1$.
- NB: effect size does not reflect sample size.
- If we toss a coin 40 times and the results are 30 H 10 T , then the odds of heads are the same.

Even small effect sizes can be significant with large samples

$$
\begin{array}{lr}
>\text { binom.test(51, } & >\text { binom.test } 5100, \\
100, .5) \$ p . \text { value } & 10000, .5) \$ p . \text { valu } \\
{[1] 0.9204108} & {[1] 0.04658553}
\end{array}
$$

The problem with null

hypothesis significance testing

Every non-directional null hypothesis is false.

- Zero effects are practically impossible when scores are continuously valued and measured with sufficient precision.
- Given enough data, even a miniscule effect size could be shown to be statistically significance.

The solution

Therefore, we report:

- effect sizes
- confidence intervals
in addition to significance and the associated p-value.

Alternatively, we can turn to Bayesian approaches...

Binomial test assumptions

- Samples can be sorted into two exhaustive, mutually exclusive categories.
- Every sample is independent of every other event.
- The population parameter p is fixed/cannot change during sampling.
In summary: the data consists of dichotomous random variables which are independently and identically distributed (i.i.d).

