The binomial test

A preview of (almost) everything

All the possible outcomes for 4 tosses of a coin

Distribution of frequencies: Binomial distribution, with *p*(Head) = 0.5

The binomial distribution

Let:

- n (or N): number of dichotomous ("Bernoulli") trials
- *x*: number of successful trials
- p: probability of a successful trial

Then the probability of obtaining exactly *x* successful trials is given by:

> choose(n, x) *
 p^x (1 - p)^(n - x)

Introducing dbinom

> dbinom(0, size = 4, prob = .5) [1] 0.0625> dbinom(1, size = 4, prob = .5) [1] 0.25> dbinom(2, size = 4, prob = .5) [1] 0.375> dbinom(3, size = 4, prob = .5) [1] 0.25> dbinom(4, size = 4, prob = .5) [1] 0.0625

Introducing pbinom

> pbinom(0, size = 4, prob = .5)[1] 0.0625> pbinom(1, size = 4, prob = .5) [1] 0.3125 > pbinom(2, size = 4, prob = .5)[1] 0.6875> pbinom(3, size = 4, prob = .5) [1] 0.9375 > pbinom(4, size = 4, prob = .5)[1] 1

Binomial Probabilities for P = .5

N = total number of events

X = number of events of one particular type (e.g., heads)

p(X) = prob that the number of events of this type is exactly X

 $p(\langle =X) = prob$ that the number of events of this type is less than or equal to X

N	х	p(X)	p(<=X)	N	х	p(X)q	p(<=X)	N	х	p(X)	p(<=X)
	-				-						
1	0	0.500	0.500	9	0	0.002	0.002	13	0	0.000	0.000
1	1	0.500	1.000	9	1	0.018	0.020	13	1	0.002	0.002
~	-			9	2	0.070	0.090	13	2	0.010	0.011
2	0	0.250	0.250	9	3	0.164	0.254	13	3	0.035	0.046
2	1	0.500	0.750	9	4	0.246	0.500	13	4	0.087	0.133
2	2	0.250	1.000	9	5	0.246	0.746	13	5	0.157	0.291
~				9	6	0.164	0.910	13	6	0.209	0.500
3	0	0.125	0.125	9	2	0.070	0.980	13	2	0.209	0.709
3	1	0.375	0.500	9	8	0.018	0.998	13	8	0.157	0.867
3	2	0.375	0.875	9	9	0.002	1.000	13	9	0.087	0.954
3	3	0.125	1.000	1.0		0.001	0.001	13	10	0.035	0.989
	0	0.000	0.050	10	- U	0.001	0.001	13	11	0.010	0.998
-	1	0.063	0.063	10	1	0.010	0.011	13	12	0.002	1.000
-	1	0.250	0.313	10	4	0.044	0.055	13	13	0.000	1.000
4	2	0.375	0.688	10	3	0.117	0.172		-		
4	3	0.250	0.938	10	4	0.205	0.377	14	0	0.000	0.000
4	4	0.063	1.000	10	5	0.246	0.623	14	1	0.001	0.001
~			0.004	10	0	0.205	0.828	14	2	0.006	0.006
2	0	0.031	0.031	10	2	0.117	0.945	14	3	0.022	0.029
5	1	0.156	0.188	10	8	0.044	0.989	14	4	0.061	0.090
5	4	0.313	0.500	10	3	0.010	0.999	14	5	0.122	0.212
5	3	0.313	0.813	10	10	0.001	1.000	14	•	0.183	0.395
5	4	0.156	0.969	1000	-			14	2	0.209	0.605
5	5	0.031	1.000	11	0	0.000	0.000	14	8	0.183	0.788
~	0	0.01.6	0.015	11	1	0.005	0.006	14	9	0.122	0.910
6	0	0.016	0.016	11	2	0.027	0.033	14	10	0.061	0.971
0	1	0.094	0.109	11	3	0.081	0.113	14	11	0.022	0.994
0	2	0.234	0.344	11	4	0.161	0.274	14	12	0.006	0.999
0	3	0.313	0.656		5	0.226	0.500	14	13	0.001	1.000
0	4	0.234	0.891	11	6	0.226	0.726	14	14	0.000	1.000
0	5	0.094	0.984		2	0.161	0.887				
6	6	0.016	1.000	11	8	0.081	0.967	15	0	0.000	0.000
_	-							15	1	0.000	0.000
2	0	0.008	0.008	11	9	0.027	0.994	15	2	0.003	0.004
2	1	0.055	0.063	11	10	0.005	1.000	15	3	0.014	0.018
2	2	0.164	0.227	11	11	0.000	1.000	15	4	0.042	0.059
2	3	0.273	0.500	1.0	-			15	5	0.092	0.151
-	4	0.2/3	0.773	12	0	0.000	0.000	15	6	0.153	0.304
2	5	0.164	0.938	12	1	0.003	0.003	15	2	0.196	0.500
<u> </u>	6	0.055	0.992	12	2	0.016	0.019	15	8	0.196	0.696
7	7	0.008	1.000	12	3	0.054	0.073	15	9	0.153	0.849
-	-			12	4	0.121	0.194	15	10	0.092	0.941
8	0	0.004	0.004	12	5	0.193	0.387	15	11	0.042	0.982
8	1	0.031	0.035	12	6	0.226	0.613	15	12	0.014	0.996
8	2	0.109	0.145	12	7	0.193	0.806	15	13	0.003	1.000
8	3	0.219	0.363	12	8	0.121	0.927	15	14	0.000	1.000
8	4	0.273	0.637	12	9	0.054	0.981	15	15	0.000	1.000
8	5	0.219	0.855	12	10	0.016	0.997	1			
8	6	0.109	0.965	12	11	0.003	1.000				
8	7	0.031	0.996	12	12	0.000	1.000				
8	8	0.004	1.000					1			

The sign test

Do infants distinguish between their mother's voice and that of another adult female?

Nine infants were tested to see how much time they would spend looking at a loud-

speaker playing their mother's voice or that of another woman. Here are the hypothetical data in seconds of looking time:

The probability is the product of probabilities of the individual tosses; e.g., .4 x .4 x .4 x .4.

Comparing two binomials

With *p* = .5:

- > dbinom(0, 4, .5)
- [1] 0.0625
- > dbinom(1, 4, .5)
- [1] 0.25
- > dbinom(2, 4, .5)
- [1] 0.375
- > dbinom(3, 4, .5)
- [1] 0.25

> dbinom(4, 4, .5) [1] 0.0625

With *p* = .6:

> dbinom(0, 4, .6)[1] 0.0256 > dbinom(1, 4, .6)[1] 0.1536 > dbinom(2, 4, .6)[1] 0.3456> dbinom(3, 4, .6)[1] 0.3456 > dbinom(4, 4, .6)[1] 0.1296

Binomial Distribution with p = 0.6

The mean is given by $Np = 4 \times .6 = 2.4H1.6T$. When $p \neq 0.5$, the distribution is skewed, but skew decreases as N increases.

Binomial distributions for larger N

Binomial Distribution n = 48 and p = 0.25

Rule of thumb: If $p \neq 0.5$ and $Np(1 - p) \geq 9$, then the normal distribution approximates the binomial.

From sample to population

We:

- observe a sample of n Bernoulli trials with x outcomes of one type, and
- calculate a statistic p, the proportion of outcomes of that one type in the sample such that p = x / n, then
- given this sample, compute a range of likely values for the population parameter p, i.e., a confidence interval.

From population to sample

We:

- hypothesized the parameter p, the probability of an outcome of a particular type in a binomial population,
- observed a sample of n Bernoulli trials with x outcomes of that type, and
- calculated the probability that the sample came from that binomial population.

Binomial Distribution n = 16 and p = x/n = 8/16 = 0.5

Based on the *sample* proportion (8 / 16 = .5), we would expect, with 95% confidence, that the value of the *population proportion* lies between 4 / 16 = .25 and 12 / 16 = .75.

Introducing binom.test

> binom.test(8, 16, .5)

Exact binomial test

data: 8 and 16

```
number of successes = 8, number of trials = 16, p-value =
1
```

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.2465101 0.7534899

sample estimates:

probability of success

0.5

Introducing binom.test

> binom.test(3, 16, .5)

Exact binomial test

data: 3 and 16

number of successes = 3, number of trials = 16, p-value =
0.02127

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.04047373 0.45645655

sample estimates:

probability of success

0.1875

Binomial Distribution n = 16 and p = x/n = 3/16 = 0.1875

Testing a null hypothesis (H_0)

- Often H₀ is the hypothesis of "no difference", but in principle, it can be any hypothesis.
- We reject H₀ if the model it specifies does not fit our data well, i.e., if the mismatch between the data and the model is unlikely to be due simply to chance (sampling error).

Testing a null hypothesis (H_0)

- Alternatively, we can construct a confidence interval based on the sample, and if the H₀ value does not fall within that interval, we reject H₀.
- If H₀ is not rejected on the basis of the available evidence, we have not proven that it's true; it may be that the difference between the model and sample are washed out by sampling error.

Statistical significance

- Statistical significance means that the probability that the H_o model assigns to the data is less than a small, arbitrarily-chosen α (alpha), often .05 or .01 by convention.
- Statistical significance is not a "gradable" quality.

Some applications of the binomial test (1/)

- 1 group, 1 dichotomous measure per participant; e.g., do Columbus residents have a preference for [str] vs. [ſtr]?
- 1 group, 1 interval measure per participant (sign test): Take the difference between each measure and a hypothesized population value and use the signs of the differences; e.g., do male speakers of a dialect have f₀ that differs from that of the standard dialect?

Some applications of the binomial test (2/)

 1 group, 1 interval measure per participant (sign test): Take the difference between each measure and a hypothesized population value and use the signs of the differences; e.g., do male speakers of a dialect have f₀ that differs from that of the standard dialect? Some applications of the binomial test (3/)

 1 group, 2 interval measures per participant (sign test); take the difference between each pair of measures and use the signs of the differences; e.g., do infants' looking times differ for mother's vs. other's voice?

Null hypothesis testing errors

- Type I: Rejecting the null hypothesis when it should not be rejected (i.e., there really is no difference)
 - probability of Type I error (α):
 - the critical value of the test statistic
 - smaller α -> wider CI -> fewer rejections of H_0
- Type II: Not rejecting the null hypothesis when it should be rejected (i.e., there really is a difference)
 - probability of Type II error (β):
 - Reduced by increasing *n*
 - Reduced by increasing effect size

Effect size

Effect size is simply a measure of the magnitude of the observed difference.

- For the binomial, one way to measure effect size is by means of the odds of one outcome
 - If we toss a coin 4 times and the results are 3H1T, then the odds of heads are 3 : 1 = 3 / 1.
- NB: effect size does not reflect sample size.
 - If we toss a coin 40 times and the results are 30H10T, then the odds of heads are the same.

Even small effect sizes can be significant with large samples

- > binom.test(51, 100, .5)\$p.value [1] 0.9204108
- > binom.test(5100, 10000,.5)\$p.value [1] 0.04658553

The problem with null hypothesis significance testing

Every non-directional null hypothesis is false.

- Zero effects are practically impossible when scores are continuously valued and measured with sufficient precision.
- Given enough data, even a miniscule effect size could be shown to be statistically significance.

The solution

Therefore, we report:

- effect sizes
- confidence intervals
- in addition to significance and the associated *p*-value.

Alternatively, we can turn to Bayesian approaches...

Binomial test assumptions

- Samples can be sorted into two exhaustive, mutually exclusive categories.
- Every sample is independent of every other event.
- The population parameter *p* is fixed/cannot change during sampling.

In summary: the data consists of dichotomous random variables which are independently and identically distributed (i.i.d).