Effect size and power analysis

Effect size

A measure of the magnitude (though usually not the sign) of the effect.
In a one-sample test, it might be defined in terms of the difference between the sample statistic (e.g., sample mean or median) and the null hypothesis parameter (e.g., the hypothesized population mean or median).

In a paired-sample test, it might be defined in terms of the sample mean (or median) of differences between the paired samples and a null hypothesis parameter (mean or median) of zero difference.

More generally: a measure of the impact of the independent variable (or predictor) on the dependent variable (or outcome)

Relation to other measures

Effect size is completely independent of sample size, and not directly related to p-values or statistical significance.

Thus both small and large effect sizes can give significant or non-significant results, depending on other factors.

Absolute effect measured in raw score units

$$
\begin{aligned}
& s_{p}=20 \\
& X_{\text {bar1 }}-X_{\text {bar2 }}=16 \\
& \text { raw score units }
\end{aligned}
$$

Relative effect measured in std. dev. units

$$
16 / 20=.80
$$

Test statistic (e.g., t) measured in std. error units

If n in each group
$=8, t(14)=1.60$
standard error units

Sample size and effect size

- As effect size d (etc.) increases, the expected t (etc.) increases linearly
- As sample size n increases, the expected t increases as a function of $\sqrt[V]{ }[n / 2]$.

Power

- The degree to which we are able to detect a significant difference
- The probability that the null hypothesis will be rejected, given a particular sample size, effect size, and a
- The proportion of the alternative hypothesis distribution beyond the critical value for the given a

Power as a function of expected $t(\delta)$ and effect size

Effect Size

a = prop. of null hypothesis distribution thatlies beyond critical value

	$\underline{\delta}$. 10	. 05	. 02	. 01
	1.00	. 26	. 17	. 09	. 06
	1.10	. 29	. 20	. 11	. 07
	1.20	. 33	. 22	. 13	. 08
	1.30	. 37	. 26	. 15	. 10
	1.40	. 40	. 29	. 18	. 12
$) \cap \square \square$	1.50	. 44	. 32	. 20	. 14
0 O	1.60	. 48	. 36	. 23	. 17
	1.70	. 52	. 40	. 27	. 19
	1.80	. 56	. 44	. 30	. 22
	1.90	. 60	. 48	. 34	. 25
ค - $\sim^{\text {- }}$	2.00	. 64	. 52	. 37	28
\bigcirc - \bigcirc	2.10	. 68	. 56	. 41	. 32
	2.20	. 71	. 60	. 45	. 35
	2.30	. 74	. 63	. 49	. 39
	2.40	. 78	. 67	. 53	. 43
Q-	2.50	. 80	. 71	. 57	. 47
	2.60	. 83	. 74	. 61	. 51
	2.70	. 85	. 77	. 65	. 55
	2.80	. 88	. 80	. 68	. 59
	2.90	. 90	. 83	. 72	. 63
	3.00	. 91	. 85	. 75	. 66
	3.10	. 93	. 87	. 78	. 70
	3.20	. 94	. 89	. 81	. 73
	3.30	. 95	. 91	. 84	. 77
	3.40	. 96	. 93	. 86	. 80
	3.50	. 97	. 94	. 88	. 82
	3.60	. 98	. 95	. 90	. 85
	3.70	. 98	. 96	. 92	. 87
	3.80	. 98	. 97	. 93	. 89
	3.90	. 99	. 97	. 94	. 91
	4.00	. 99	. 98	. 95	. 92

To increase power

- increase a (at the cost of Type I error),
- increase d,
- increase precision of measurement,
- decrease variability (e.g., by using a within-subjects design), or
- increasen.

Power analysis in R (pwr library)

```
pwr.2p.test
pwr.2p2n.test
pwr.anova.test
pwr.chisq.test
pwr.f2.test
pwr.p.test
pwr.r.test
pwr.t.test
pwr.t2n.test
```

two proportions (equal n)
two proportions (unequal n)
balanced one-way ANOVA
Pearson chi-square test
Generalized linear model
one proportion
correlation
t-test (one-sample, two-sample, paired)
t-test (two-sample, unequal n)
> library(pwr)
> pwr.t.test $(\mathrm{n}=25, \mathrm{~d}=.5$, sig.level $=.05$, type $=$ "paired") Paired t test power calculation

$$
\begin{aligned}
\mathrm{n} & =25 \\
\mathrm{~d} & =0.5 \\
\text { sig.level } & =0.05 \\
\text { power } & =0.6697077 \\
\text { alternative } & =\text { two.sided }
\end{aligned}
$$

NOTE: n is number of *pairs*

```
> pwr.t.test(d = .5, sig.level = .05, power = . 8,
    type = "paired")
```

Paired t test power calculation

$$
\begin{aligned}
\mathrm{n} & =33.36713 \\
\mathrm{~d} & =0.5 \\
\text { sig.level } & =0.05 \\
\text { power } & =0.8 \\
\text { alternative } & =\text { two.sided }
\end{aligned}
$$

NOTE: n is number of *pairs*

Fisher's exact test

Testing for independence of categorical variables

Fisher's exact test tests for the independence of two categorical (usually boolean) variables.

The null hypothesis that the population conditional probabilities are equal. To compute the null hypothesis p-value, we compute the probability of each count table that has conditional probabilities as extreme or more extreme than those observed in the sample, then sum those probabilities.

This test makes obsolete the earlier Pearson chi-square test, one of the earliest null hypothesis tests, which is merely approximate (i.e., asymptotically correct), now that we have digital computers and can compute the factorial possibilities quickly...

The lady tasting tea

The "lady" (believed to be Muriel Bristol, a phycologist) claimed that she could tell whether milk or tea was added first.
$a=$ her guess as to whether milk or tea was added first
$b=$ whether milk or tea was added first
This is something of a class shibboleth in the British Isles:

- upper-class people usually put the tea in first
- lower-class people (and the Irish) usually put the milk in first
(cf. George Orwell's essay A Nice Cup of Tea.)

The lady tasting tea

Guess \Reality

Milk first
Tea first
Milk first
7

2

Tea first
2

8

01	Ô2		Ô3		Ô4		0 O		Ô6		0 07		0̂8		009		0 O10	
90	8	1	7	2	6	3	5	4	4	5	3	6	2	7	1	8	0	9
19	2	8	3	7	4	6	5	5	6	4	7	3	8	2	9	1	10	0

"this large or larger"

a	b	$a+b$
c	d	$c+d$
$a+c$	$b+d$	

$$
p=[(a+b)!(c+d)(a+c)!(b+d)!] /[(a+b+c+d)!a!b!c!d!]
$$

$$
\begin{aligned}
& \text { > tab <- cbind(c(7, 2), c(2, 8)) } \\
& >\text { tab } \\
& \begin{array}{lrr}
& {[, 1]} & {[, 2]} \\
{[1,]} & 7 & 2
\end{array} \\
& {[2,] \quad 2 \quad 8}
\end{aligned}
$$

```
> fisher.test(tab)
```

Fisher's Exact Test for Count Data

```
data: tab
p-value = 0.02301
alternative hypothesis: true odds ratio is not equal to l
9 5 \text { percent confidence interval:}
    1.116329 214.179160
sample estimates:
odds ratio
    11.64655
```

