
Simple linear regression
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Where we're headed

● Mixing interval and categorical variables
● Modeling dependent variables as a function of multiple independent variables
● Studies with repeated measures (e.g., multiple samples per subject or item)
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Outline for the next few weeks

● (Today) simple linear regression
● And in the near future:

○ more complex linear regression, and analysis of covariance
○ logistic regression
○ ordinal regression
○ isotonic regression
○ mixed effects regression
○ post-hoc tests

● And if time allows, a final lecture on data visualization in R.
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Problems addressed (1/)

Recall my (re)definition of the two-sample t-test from last week:

● Samples are: pairs c, d where c is a scalar and d is a boolean indicating group 
membership

● Null hypothesis: the two samples have the same means

Or, in other words, we have an interval DV (c) and a binomial IV (d). 

But what if d was a categorical variable of more than two levels? E.g.: "autism 
spectrum disorder", "specific language impairment", "typical development". One 
might want to formulate null hypotheses such as "all the group means are equal" 
("omnibus test") or "no two pairs of group means are different" ("post-hoc test").
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Problems addressed (2/)

So far we've seen:

● Categorical DV, one binomial IV: Fisher exact test
● Rank DV, one binomial IV: two-sample Wilcoxon test
● Interval DV, one binomial IV: two-sample t-test
● interval DV, one interval IV: Pearson r test
● interval/rank DV, one interval/rank IV: Spearman ⍴ test, Kendall τb test
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Problems addressed (3/)

Regression and ANOVA will also allow us to do:

● Interval DV, categorical IVs: one-way ANOVA
● Interval DV, categorical and/or interval IVs: linear regression
● Binomial DV, categorical and/or interval IVs: logistic regression
● Rank DV, categorical and/or interval IVs: ordinal regression
● rank DV, rank IVs: isotonic regression

6



Simple linear regression

Simple linear regression covers designs where there is one interval DV, and one or 
more interval or categorical IVs.

For each (pseudo-)DV we learn its slope with respect to the interval DV; thus we can 
represent the relationship using a familiar formula:

Y = aX + b
where a is the slope and b is the y-intercept (i.e., the value of Y when X = 0). Thus the 
model is very similar to that of Pearson's r, as we'll see.
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The equation for the ith point

yi = β0 + β1xi + εi
where

● yi is a ith value of the DV,
● β0 is the y-intercept of the line,
● β1 is the slope of the line,
● xi is the ith value of the IV, and
● εi is the deviance of the ith observation.

Sometimes we write Β = {β0, β1, ...}.

8



The equation in general

Y = β0 + β1X + ε
where

● Y is an n-length vector of DV values,
● β0 is a scalar, the y-intercept of the line,
● β1 is a scalar, the slope of the line,
● X is an n-length vector of IV values, and
● ε is an n-length vector of deviances.
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The prediction for the ith point

ŷi = β0 + β1xi
where

● ŷi is the predicted ith y-value,
● β0 is the y-intercept of the line,
● β1 is the slope of the line, and
● xi is the ith value of the IV.
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The prediction in general

Ŷ = β0 + β1X
where

● Ŷ is an n-length vector of predicted DV values,
● β0 is a scalar, the y-intercept of the line,
● β1 is a scalar, the slope of the line, and
● X is an n-length vector of IV values.
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Some questions we can ask (1/)

● What is the total variance of Y?

This is measured by the sum of squared deviations (SS) of each observed yi from the 
sample mean Y̅.

SStotal = ∑i (yi − Y̅)2.
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Some questions we can ask (2/)

● How much variance is captured by the linear model?

This is measured by the sum of squared deviations of each prediction ŷi from the 
sample mean Y̅.

SSmodel = ∑i (ŷi − Y̅)2.
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Some questions we can ask (3/)

● How much variance is unmodeled (i.e., is error)?

This is measured by the sum of squared deviations of each observation yi from the 
prediction ŷi.

SSerror = ∑i (yi − ŷi)
2.
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Partitioning the sum of squared errors

In general,

SStotal = SSmodel + SSerror
where

SStotal = ∑i (yi − Y̅)2, 
SSmodel = ∑i (ŷi − Y̅)2, and 

SSerror = ∑i (yi − ŷi)
2.
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SStotal = ∑i (yi − Y̅)2

SSmodel = ∑i (ŷi − Y̅)2

SSerror = ∑i (yi − ŷi)
2



Like standard deviation, this measures how much yi differs from ŷi:

sY −Ŷ = √[SSerror / (n − 2)]
There are n - 2 degrees of freedom here because we have to estimate two other 
parameters, β0 and β1.

Standard error of the estimate
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Relationship to r2

Recall that r2 is the proportion of the total variance accounted for by the model. 
Therefore, it is just: 

r2 = SSmodel  / SStotal
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If the correlation between two variables is perfect (i.e., r = 1 or r = −1), then 
predictability is also perfect (i.e., ε = 0).

In that case, if we knew the Z-score for some x we would also know the Z-score for y:

Zy = +Zx when r = 1, and
Zy = −Zx when r = −1.

Relation to r (1/)
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And even if the correlation is imperfect, our best prediction of Zy is r Zx:

Ẑy ≅ r Zx
Here, r is the ratios of the two variables' standard deviations; it is the proportion of sY 
observed for each change in sX.

Relation to r (2/)
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Sternberg's (1966) short-term memory scanning

Subjects are briefly shown 1-6 digits to remember (the "memory set").

After a short pause, the subject is shown a single digit (the "probe") and asked to 
indicate whether the digit was in the memory set or not.

Independent variable: size of the memory set

Dependent variable: RT in seconds
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Sample trial

Memory set: 3 5 2 7 9

Probe: 7

Response: Yes
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(Image credit: Sternberg 1966)
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X Y X − X̄ Y − Y̅ (X − X̄) (Y − Y̅)

(set size) (RT in seconds) X-deviation Y-deviation Deviation prod.

1 .440 −2.5 −.110 0.2750

2 .515 −1.5 −.035 0.0525

3 .550 −0.5 .000 0.0

4 .575 0.5 .025 0.0125

5 .605 1.5 .055 0.0825

6 .615 2.5 .065 0.1625

SX = 1.87 SY = 0.65 ∑ = 0.585

cov(X, Y) = 0.585 / (6 − 1) = 0.117
r = cov(X, Y) / (SX SY) = 0.117 / (1.87 × 0.65) = .960



Computing the regression model

Recall the formula

Y = β0 + β1X + ε.
Then,

β1 = r (sY / sX)
β0 = Y̅ − β1X̄.
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> x <- 1:6
> y <- c(.440, .515, .550, .575, .605, .615)
> regress <- lm(y ~ x)
> summary(regress)

Call:
lm(formula = y ~ x)

Residuals:
        1         2         3         4         5         6 
-0.026429  0.015143  0.016714  0.008286  0.004857 -0.018571 
...
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...
Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.433000   0.018875  22.941 2.14e-05 ***
x           0.033429   0.004847   6.897  0.00232 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.02027 on 4 degrees of freedom
Multiple R-squared:  0.9224,    Adjusted R-squared:  0.903
F-statistic: 47.57 on 1 and 4 DF,  p-value: 0.002317

Here the row labeled (Intercept) gives statistics associated with β0 and the row 
labeled x gives statistics associated with β1.
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> confint(regress)
                 2.5 %     97.5 %
(Intercept) 0.38059487 0.48540513
x           0.01997218 0.04688497

Since neither interval contains 0, we conclude that neither β0 nor β1 is likely to be 0 at 
the population level.

29



> fitted(regress)
        1         2         3         4         5         6
0.4664286 0.4998571 0.5332857 0.5667143 0.6001429 0.6335714

AKA: Ŷ. 

> residuals(regress)
           1            2            3            4           
5            6 
-0.026428571  0.015142857  0.016714286  0.008285714  
0.004857143 -0.018571429

AKA: ε.
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> plot(x, y, xlab = "Memory set size", ylab = "RT (s)")
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> plot(x, y, xlab = "Memory set size", ylab = "RT (s)")
> abline(regress)
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Using the formula to predict

● What RT (s) would we predict for set size x = 7?

ŷ = 0.433 + 033 × 7 = 0.664
● What about for set size x = 15?

While the formula gives an answer, it is probably dangerous to extrapolate this far, 
since it is independently known that people generally can't remember 15-digit 
numbers without extensive practice.
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Relation to point-biserial correlation

So far we've focused on the case with a single interval IV. But just as Pearson 
correlation can be applied to a binomial IV (as point-biserial correlation), so to can 
linear regression.

The trick here is dummy coding the IV so that one level is 0 and another is 1. (This is 
the same trick we used last week.)
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> dialect.perception <- data.frame(
+     dialect = c("A", "A", "A", "A", "A", "A",
+                 "B", "B", "B", "B", "B", "B"),
+      dialect.code = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),
+      accuracy = c(55, 73, 76, 66, 72, 81, 71, 93, 77, 89,
+      101, 97))

dialect_perception <- data.frame(
     dialect = c("A", "A", "A", "A", "A", "A",
                "B", "B", "B", "B", "B", "B"),
     dialect_code = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),
     accuracy = c(55, 73, 76, 66, 72, 81, 71, 93, 77, 89,
     101, 97))
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> dialect.perception
   dialect dialect.code accuracy
1        A            0       55
2        A            0       73
3        A            0       76
4        A            0       66
5        A            0       72
6        A            0       81
7        B            1       71
8        B            1       93
9        B            1       77
10       B            1       89
11       B            1      101
12       B            1       97
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> plot(accuracy ~ dialect.code, data = dialect.perception,
+      xlab = "Dialect", ylab = "Number correct")
> abline(lm(accuracy ~ dialect.code,
+           data = dialect.perception))
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As Student's t-test

> t.test(accuracy ~ dialect.code, data = dialect.perception,
+        var.equal = TRUE)

Two Sample t-test

data:  accuracy by dialect_code
t = -2.896, df = 10, p-value = 0.01594
alternative hypothesis: true difference in means is not equal 
to 0
...
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As a linear regression

> regress <- lm(accuracy ~ dialect,
+               data = dialect.perception)
> summary(regress)
...
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)    70.500      4.273  16.499  1.4e-08 ***
dialect_code   17.500      6.043   2.896   0.0159 *
...

Note that R handles the dummy coding for us so we use the categorical dialect 
rather than the numerical dialect.code.
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Sidebar

We can also use this "formula syntax" (i.e., with ~) in many R statistics functions 
such as t.test, wilcox.test, and so on:

> iris2 <- droplevels(
+     subset(iris, Species %in% c("versicolor", "virginica")))
> t.test(Sepal.Width ~ Species, data = iris2)
        Welch Two Sample t-test

data:  Sepal.Width by Species
t = -3.2058, df = 97.927, p-value = 0.001819
...

43



Using the formula to predict

● What's the mean accuracy for dialect A (x = 0)?

ŷ = 70.5 + 17.5 × 0 = 70.5
● What the mean accuracy for dialect B (x = 1)?

ŷ = 70.5 + 17.5 × 1 = 88.0
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The two-sample t-test is a special case

Indeed, virtually all parametric statistical tests (including ANOVA) are special cases 
of what is called generalized linear regression.
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Assumptions of simple linear regression

● A linear relationship between DV and IVs
● Bivariate normality
● Samples are independent and identically distributed (modulo IVs)
● Homoscedasticity (e.g., homogeneity of variance); check this for a binomial IV by 

applying the F-test for homoscedasticity (var.test).
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Note for computational linguistics students

There is a relatively close relationship between linear regression models and what 
speech and NLP researchers call linear models or maximum entropy (or maxent) 
models, but the estimation procedures used are different (e.g., they often work online 
in small batches rather than all at once).
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Questions? Please take 
them to email, or Slack.
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