
Generalized linear regression

LING82100: Statistics for Linguistic Research



Outline

● Homework tips
● Interactions between independent variables
● Generalized linear regression

○ In particular, logistic regression, used for binomial dependent variables

● For home consumption: isotonic regression
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Homework 05 tips (1/)

● If you're using stopifnot to verify properties, and the condition fails, try 
printing out the relevant values just before you run stopifnot.

○ Unfortunately R doesn't let you specify a logging statement with stopifnot , though Python does 
with assert.

● The command all.equal can be used to check if two values are very close, 
and plays nicely with stopifnot.
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Homework 05 tips (2/)

● A few people were confused by the notation Y ~ 1:
○ If you have Y ~ X and you want to "drop out" X, R doesn't let you write Y ~. 
○ The 1 here symbolizes the intercept.
○ If for some reason you want a model without an intercept you can write Y ~ -1.

● Generalizing a bit, if you have Y ~ X1 + X2:
○ If you want to "drop out" X1, you write Y ~ X2.
○ If you want to "drop out" X2, you write Y ~ X1.

● The function lrtest from the lmtest package can compute the log-likelihood 
ratio test (both the test statistic and the p-value) for two models so long as one 
nests the other; you still have to fit the "dropped out" models though.
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Questions?
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Interactions
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Interaction terms

In some cases we are interested not just in the effect of a given independent variable 
(IV) but its interaction with another IV.

The nature and interpretation of the interaction depends on the the types of IVs 
involved.
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Types of interaction

● Interaction of two binomial IVs: is there an change in Y when both X1 and X2 are 
active (i.e., true) beyond that associated with X1 and X2?

○ Are the effects of X1 and X2 on Y independent?

● Interaction of a binomial IV Xb and a continuous IV Xc: is the change in Y 
associated with Xc different when Xc, is active?

○ Is the slope of Xc, with respect to Y different when X1 is active?

● Interaction of two continuous IVs: is Y also sensitive to the product of X1 and X2?

The interaction of two multinomial IVs is best understood by decomposing them into 
binomial IVs.
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Specifying interactions in R formulae

Long form:

Y ~ X1 + X2 + X1:X2

Short form:

Y ~ X1 * X2

You can specify an interaction without a main term (e.g., Y ~ X1:X2) but it is rarely 
needed.
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Example (1/)

Is petal length influenced by the interaction between sepal length and sepal width?

Q: What kind of interaction is this?

A: An interaction between continuous IVs.
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> r.simple <- lm(Petal.Length ~ Petal.Width +
+                Sepal.Length + Sepal.Width,
+                data = iris)
> summary(r.simple)
...
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.26271    0.29741  -0.883    0.379    
Petal.Width   1.44679    0.06761  21.399   <2e-16 ***
Sepal.Length  0.72914    0.05832  12.502   <2e-16 ***
Sepal.Width  -0.64601    0.06850  -9.431   <2e-16 ***
...
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> r.intrct <- lm(Petal.Length ~ Petal.Width +
+                Sepal.Length * Sepal.Width,
+                data = iris)
> summary(r.intrct)
...
                      Estimate Std. Error t value Pr(>|t|) 
(Intercept)           0.71482    1.56623   0.456   0.6488    
Petal.Width           1.43584    0.06991  20.539   <2e-16 ***
Sepal.Length          0.56175    0.26970   2.083   0.0390 *  
Sepal.Width          -0.97041    0.51486  -1.885   0.0615 .  
Sepal.Length:Sepa..   0.05642    0.08874   0.636   0.5259
...
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Example (2/)

The three-way interaction model

Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width +
     Petal.Width:Sepal.Length +
     Petal.Width:Sepal.Width +
     Sepal.Length:Sepal.Width +
     Petal.Width:Sepal.Length:Sepal.Width

can also be fit (if you have enough data), but is basically uninterpretable.

14



Example (3/)

Is there an interaction between age and gender in the ANAE low back merger data 
(from homework 05)?

Q: What kind of interaction is this?

A: An interaction between a continuous IV (age) and a binomial IV (gender...uh...
        at least as it is coded in that data).
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> r.simple <- lm(distance ~ age + gender + dialect,
+                data = anae)
> summary(r.simple)
...
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  176.8756     7.8732  22.465  < 2e-16 ***
age            0.7735     0.2954   2.618 0.009177 ** 
gender1        4.4896     4.4425   1.011 0.312821    
dialect1    -103.6565    30.3734  -3.413 0.000708 ***
dialect2    -138.7272    34.7547  -3.992 7.80e-05 ***
dialect3    -132.0029    18.7318  -7.047 8.00e-12 ***
dialect5       1.5156    48.6868   0.031 0.975181    
...

16



> r.intrct <- lm(distance ~ age + gender + age:gender +
+                dialect, data = anae)
> summary(r.intrct)
...
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  177.0400     7.8752  22.481  < 2e-16 ***
age            0.6877     0.3080   2.233 0.026093 *  
gender1        4.2793     4.4478   0.962 0.336575    
age:gender1    0.2984     0.3024   0.987 0.324383    
dialect1    -102.7246    30.3890  -3.380 0.000795 ***
dialect2    -141.1245    34.8407  -4.051 6.14e-05 ***
dialect3    -132.4366    18.7376  -7.068 7.02e-12 ***
...
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Example (4/)

There is no consensus whether it is sensible to test for interactions (e.g., of age and 
gender) when one or the other non-interaction term is non-significant (e.g., above, 
where the standard error for age was larger than the coefficient).
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Nota bene

● Caution is necessary when "dropping" (i.e., doing likelihood ratio tests on) 
models with interaction terms:

○ If the model is Y ~ X1 * X2 , to drop the interaction you write Y ~ X1 + X2 .
○ To make this even clearer, you can specify the full model as Y ~ X1 + X2 + X1:X2 .
○ If you drop a (non-interaction) independent variable, you should also remove its interactions.

● drop1 does not understand interactions and gives nonsensical results if they 
are present; stepwise fitting functions may similarly be confused. 

● Three- and four-way interactions are hard to interpret, burn up degrees of 
freedom quickly, and tend to give short shrift to main effects:

"Analysts usually steer clear of higher-order interactions".
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Generalized linear 
regression
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Generalizing linear regression

Two key assumptions of linear regression (as well as ANOVA) is that the dependent 
variable (DV) is

● normally distributed (or the central limit theorem applies), and
● a linear sum of the coefficients and their IVs. 

This assumption is flagrantly violated when the DV is a proportion or probability, as

● probabilities violate the assumption of homogeneity of variance, and
● for probability DVs a linear model can predict p < 0 or p > 1.
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Problems with percentages

A change of a percentage p̂ = .5 is "less" (according to the binomial distribution) of a 
change than a change for probability close to 0 or 1, so

● effects close to 0 or 1 are underestimated and
● effects close to .5 are overestimated.

"In what space can we capture these intuitions?"

Desiderata:

● smooth, continuous, differentiable transformation function
● domain [0, 1], range (−∞, +∞)
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The arcsine transformation

One traditional answer to these questions is the arcsine (or angular) transformation, 
defined by the inverse sine of the square root of the proportion, or

arcsin √[p] 

which has a range of [0, 2π]. Or in R:

> asin(sqrt(p))
[1] 0.4636476
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From probabilities to odds

The odds of a probability p is simply:

O = p / (1 − p)

This has the range [0, +∞].

For instance, for p = .9, O = 9, and for p = .1, O = 0.1111.

 



From odds to log-odds

Because of the strange range…

e.g., p < .5 implies 0 < O < 1, whereas p > .5 implies 1 < O < ∞,

it is often preferable to work in log-space, where the range is [−∞, +∞].

log O = log p − log(1 − p)
= log c − log(N − c)

For instance, for p = .9, log(O) = 2.197, and for p = .1, log(O) = −2.197.



Introducing qlogis

In R, the transformation from probabilities to log-odds, the logit, is performed by 
qlogis.

> qlogis(seq(0, 1, .1))
 [1]       -Inf -2.1972246 -1.3862944 -0.8472979 -0.4054651
 [6]  0.0000000  0.4054651  0.8472979  1.3862944  2.1972246               
 [7]  Inf





Introducing logistic regression

The framework of generalized linear models are linear models augmented with link 
functions (such as the logit) which map arbitrary types of DVs onto a linear function.

With some magic (not covered in this class), we can then estimate the parameters of 
such models.

A generalized linear models with logit link functions are known as logistic regression 
models.

FYI: the logistic is the inverse of the logit function, mapping from log-odds to 
probabilities.



Logistic regression in R

To specify a logistic regression, we use the function glm (which fits generalized 
linear models) and specify family = binomial (which enables a logit link 
function, giving us logistic regression) in particular.

Nearly all other linear model functions work the same; we can call summary, 
compute residuals, perform the likelihood ratio test with drop1, etc.
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An example from the [∫]treets of Columbus (1/)

The envelope of variation is pronunciation of word-initial str- as [str] vs. [∫tr].

Data collected using a rapid anonymous design: ask for directions to a nearby bank 
so as to elicit tokens of street (cf. Labov 1966 on post-vocalic r in New York via 
fourth floor, Prichard 2010 on /ay/-monophthongization in Atlanta via five o'five).



An example from the [∫]treets of Columbus (2/)

Predictors include:

● Gender
● Emphasis (normal vs. a second rendition after "what did you say?")
● Age (coded as "young", "middle", or "old")
● Social class (coded as "working class", "lower middle class", and "upper middle 

class")



> xtabs(~ str + emphatic, data = cbus)
emphatic

str    Less More
  shtr   43   14
  str    77  106
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> r <- glm(str ~ emphatic, data = cbus, family = binomial)
> summary(r)

Call:
glm(formula = str ~ emphatic, family = binomial, data = cbus)
...
Coefficients:

                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)        0.5826     0.1904   3.060  0.00221 ** 
emphaticMore       1.4418     0.3422   4.213 2.52e-05 ***
...
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Interpretation notes

Using the standard procedure of computing estimates for Y by adding the intercept 
and the product of coefficients and IVs, we obtain a number in log-odds space. We 
can convert back to an estimated probability using the R function plogis, the 
inverse of qlogis.

E.g., to estimate P(str | "more emphatic"), we have:

> intercept <- 0.5826
> moreEmphatic <- 1.4418
> plogis(intercept + moreEmphatic)
[1] 0.8833352



Nota bene

There is a strong connection between (binomial) logistic regression for statistical 
inference and so-called multinomial logistic regression (or maxent models) used for 
classification in speech and language processing, though

● they often use different representations of the IVs (e.g., dense 
continuously-valued vs. sparse booleans), and

● they often use different learning algorithms (e.g., iteratively-reweighted least 
squares vs. stochastic gradient descent).



Questions? Please take 
them to email, or Slack.
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