Generalized linear regression

Outline

- Homework tips
- Interactions between independent variables
- Generalized linear regression
- In particular, logistic regression, used for binomial dependent variables
- For home consumption: isotonic regression

Homework 05 tips (1/)

- If you're using stopifnot to verify properties, and the condition fails, try printing out the relevant values just before you run stopifnot.
- Unfortunately R doesn't let you specify a logging statement with stopifnot, though Python does with assert.
- The command all. equal can be used to check if two values are very close, and plays nicely with stopifnot.

Homework 05 tips (2/)

- A few people were confused by the notation $Y \sim 1$:
- If you have $Y \sim X$ and you want to "drop out" X, R doesn't let you write Y ~.
- The 1 here symbolizes the intercept.
- If for some reason you want a model without an intercept you can write $Y \sim-1$.
- Generalizing a bit, if you have $Y \sim X 1+X 2$:
- If you want to "drop out" X_{1}, you write $Y \sim X 2$.
- If you want to "drop out" X_{2}, you write $Y \sim X 1$.
- The function lrtest from the lmtest package can compute the log-likelihood ratio test (both the test statistic and the p-value) for two models so long as one nests the other; you still have to fit the "dropped out" models though.

Questions?

Interactions

Interaction terms

In some cases we are interested not just in the effect of a given independent variable (IV) but its interaction with another IV.

The nature and interpretation of the interaction depends on the the types of IVs involved.

Types of interaction

- Interaction of two binomial IVs: is there an change in Y when both X_{1} and X_{2} are active (i.e., true) beyond that associated with X_{1} and X_{2} ?
- Are the effects of X_{1} and X_{2} on Y independent?
- Interaction of a binomial IV X_{b} and a continuous IV X_{c} : is the change in Y associated with X_{c} different when $X_{c^{\prime}}$, is active?
- Is the slope of X_{c}, with respect to Y different when X_{1} is active?
- Interaction of two continuous IVs: is Y also sensitive to the product of X_{1} and X_{2} ?

The interaction of two multinomial IVs is best understood by decomposing them into binomial IVs.

Specifying interactions in R formulae

Long form:

$$
Y \sim X 1+X 2+X 1: X 2
$$

Short form:

$$
Y \sim X 1 * X 2
$$

You can specify an interaction without a main term (e.g., Y ~ X1: X2) but it is rarely needed.

Example (1/)

Is petal length influenced by the interaction between sepal length and sepal width?
Q: What kind of interaction is this?
A: An interaction between continuous IVs.

```
> r.simple <- lm(Petal.Length ~ Petal.Width +
+ Sepal.Length + Sepal.Width,
    data = iris)
> summary(r.simple)
```

	Estimate	Std. Error	t value	Pr $(>\|t\|)$	
(Intercept)	-0.26271	0.29741	-0.883	0.379	
Petal.Width	1.44679	0.06761	21.399	$<2 e-16$	$* * *$
Sepal.Length	0.72914	0.05832	12.502	$<2 e-16$	$* * *$
Sepal.Width	-0.64601	0.06850	-9.431	$<2 e-16 * * *$	

```
> r.intrct <- lm(Petal.Length ~ Petal.Width +
+ Sepal.Length * Sepal.Width,
    data = iris)
> summary(r.intrct)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & d. Err & t value & \multicolumn{2}{|l|}{\(\operatorname{Pr}(>|t|)\)} \\
\hline (Intercept) & 0.71482 & 1.56623 & 0.456 & 0.6488 & \\
\hline Petal.Width & 1.43584 & 0.06991 & 20.539 & <2e-16 & *** \\
\hline Sepal.Length & 0.56175 & 0.26970 & 2.083 & 0.0390 & * \\
\hline Sepal.Width & -0.97041 & 0.51486 & -1.885 & 0.0615 & \\
\hline Sepal.Length:Sepa. . & 0.05642 & 0.08874 & 0.636 & 0.5259 & \\
\hline
\end{tabular}
```


Example (2/)

The three-way interaction model

```
Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width +
    Petal.Width:Sepal.Length +
    Petal.Width:Sepal.Width +
    Sepal.Length:Sepal.Width +
    Petal.Width:Sepal.Length:Sepal.Width
```

can also be fit (if you have enough data), but is basically uninterpretable.

Example (3/)

Is there an interaction between age and gender in the ANAE low back merger data (from homework 05)?

Q: What kind of interaction is this?
A: An interaction between a continuous IV (age) and a binomial IV (gender...uh... at least as it is coded in that data).

```
> r.simple <- lm(distance ~ age + gender + dialect,
+ data = anae)
> summary(r.simple)
```



```
> r.intrct <- lm(distance ~ age + gender + age:gender +
+ dialect, data = anae)
> summary(r.intrct)
```


Example (4/)

There is no consensus whether it is sensible to test for interactions (e.g., of age and gender) when one or the other non-interaction term is non-significant (e.g., above, where the standard error for age was larger than the coefficient).

Nota bene

- Caution is necessary when "dropping" (i.e., doing likelihood ratio tests on) models with interaction terms:
- If the model is $\mathrm{Y} \sim \mathrm{X} 1 * \mathrm{X} 2$, to drop the interaction you write $\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2$.
- To make this even clearer, you can specify the full model as $Y \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 1: \mathrm{X} 2$.
- If you drop a (non-interaction) independent variable, you should also remove its interactions.
- drop1 does not understand interactions and gives nonsensical results if they are present; stepwise fitting functions may similarly be confused.
- Three- and four-way interactions are hard to interpret, burn up degrees of freedom quickly, and tend to give short shrift to main effects:
"Analysts usually steer clear of higher-order interactions".

Generalized linear regression

Generalizing linear regression

Two key assumptions of linear regression (as well as ANOVA) is that the dependent variable (DV) is

- normally distributed (or the central limit theorem applies), and
- a linear sum of the coefficients and their IVs.

This assumption is flagrantly violated when the DV is a proportion or probability, as

- probabilities violate the assumption of homogeneity of variance, and
- for probability DVs a linear model can predict $p<0$ or $p>1$.

Problems with percentages

A change of a percentage $\hat{p}=.5$ is "less" (according to the binomial distribution) of a change than a change for probability close to 0 or 1 , so

- effects close to 0 or 1 are underestimated and
- effects close to .5 are overestimated.
"In what space can we capture these intuitions?"
Desiderata:
- smooth, continuous, differentiable transformation function
- domain $[0,1]$, range $(-\infty,+\infty)$

The arcsine transformation

One traditional answer to these questions is the arcsine (or angular) transformation, defined by the inverse sine of the square root of the proportion, or

$\arcsin \sqrt{ }[p]$

which has a range of $[0,2 \pi]$. Or in R:
> asin(sqrt(p))
[1] 0.4636476

From probabilities to odds

The odds of a probability p is simply:

$$
0=p /(1-p)
$$

This has the range $[0,+\infty]$.
For instance, for $p=.9,0=9$, and for $p=.1,0=0.1111$.

From odds to log-odds

Because of the strange range...

$$
\text { e.g., } p<.5 \text { implies } 0<0<1 \text {, whereas } p>.5 \text { implies } 1<0<\infty \text {, }
$$

it is often preferable to work in log-space, where the range is $[-\infty,+\infty]$.

$$
\begin{aligned}
\log 0 & =\log p-\log (1-p) \\
& =\log c-\log (N-c)
\end{aligned}
$$

For instance, for $p=.9, \log (0)=2.197$, and for $p=.1, \log (0)=-2.197$.

Introducing qlogis

In R, the transformation from probabilities to log-odds, the logit, is performed by qlogis.
> qlogis(seq(0, 1, .1))
[1] -Inf -2.1972246-1.3862944 -0.8472979 -0.4054651
[6] $0.0000000 \quad 0.4054651 \quad 0.8472979 \quad 1.3862944 \quad 2.1972246$
[7] Inf

Introducing logistic regression

The framework of generalized linear models are linear models augmented with link functions (such as the logit) which map arbitrary types of DVs onto a linear function.

With some magic (not covered in this class), we can then estimate the parameters of such models.

A generalized linear models with logit link functions are known as logistic regression models.

FYI: the logistic is the inverse of the logit function, mapping from log-odds to probabilities.

Logistic regression in R

To specify a logistic regression, we use the function $g 1 m$ (which fits generalized linear models) and specify family = binomial (which enables a logit link function, giving us logistic regression) in particular.

Nearly all other linear model functions work the same; we can call summary, compute residuals, perform the likelihood ratio test with drop1, etc.

An example from the [[]treets of Columbus (1/)

The envelope of variation is pronunciation of word-initial str- as [str] vs. [fr r$]$.
Data collected using a rapid anonymous design: ask for directions to a nearby bank so as to elicit tokens of street (cf. Labov 1966 on post-vocalic r in New York via fourth floor, Prichard 2010 on /ay/-monophthongization in Atlanta via five o'five).

An example from the []]treets of Columbus (2/)

Predictors include:

- Gender
- Emphasis (normal vs. a second rendition after "what did you say?")
- Age (coded as "young", "middle", or "old")
- Social class (coded as "working class", "lower middle class", and "upper middle class")

$>$	xtabs $(\sim$ str	+
emphatic		
str	Less	More
shtr	43	14
str	77	106

```
> r <- glm(str ~ emphatic, data = cbus, family = binomial)
```

$>$ summary(r)

Call:
glm(formula $=$ str \sim emphatic, family $=$ binomial, data $=$ cbus)

Coefficients:
(Intercept)
emphaticMore

Estimate	Std. Error	z value $\operatorname{Pr}(>\|z\|)$		
0.5826	0.1904	3.060	0.00221^{*}	*t
1.4418	0.3422	4.213	$2.52 e-05$	$* * *$

Interpretation notes

Using the standard procedure of computing estimates for Y by adding the intercept and the product of coefficients and IVs, we obtain a number in log-odds space. We can convert back to an estimated probability using the R function plogis, the inverse of qlogis.
E.g., to estimate P(str | "more emphatic"), we have:

```
> intercept <- 0.5826
> moreEmphatic <- 1.4418
> plogis(intercept + moreEmphatic)
[1] 0.8833352
```


Nota bene

There is a strong connection between (binomial) logistic regression for statistical inference and so-called multinomial logistic regression (or maxent models) used for classification in speech and language processing, though

- they often use different representations of the IVs (e.g., dense continuously-valued vs. sparse booleans), and
- they often use different learning algorithms (e.g., iteratively-reweighted least squares vs. stochastic gradient descent).

Questions? Please take them to email, or Slack.

