
Mixed effects regression II
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What we've seen so far (1/)

● Some independent variables are random effects, categorical variables sampled 
from a large or even infinite set of possible values (e.g., subject; 
"language"/stimulus/item/word/sentence).

● When these are nested with other covariates (e.g., subject and subject age, 
education, social class; stimulus and fixed properties of that stimulus like length 
and frequency), this may introduce multicollinearity.
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What we've seen so far (2/)

● Treating random effects as fixed effects overfits and requires a huge number of 
degrees of freedom, yet we are usually uninterested in using them for null 
hypothesis testing.

● Aggregating observations across random effects underestimates variance and 
the number of free degrees of freedom; and, it is only straightforward to 
aggregate across one random effect at a time.

● Omitting random effects altogether gives rise to omitted variable bias (e.g., 
Simpson's paradox).
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Mixed effects models

● Provide a parsimonious (albeit internally quite complex) way to estimate linear 
models which contain random effects.

● Random intercepts are estimates like multinomial categorical fixed effects, but 
they are shrunk and are roughly normally distributed with mean X̄ = 0.

RT ~ (1 | Subj) + (1 | Item)
● It is straightforward to compare two mixed effects models so long as

○ they have the same random effects structure, and
○ one's fixed effects "nests" (is a proper superset) of the other's.
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Outline for today

● Random slopes, interactions between fixed and random effects, and
● generalized linear mixed effects models such as logistic mixed effects 

regression.



Random slopes



Lexical decision example

The dependent variable is reaction time; independent variables include:

● Fixed effects:
○ NativeLanguage  ("English" or "other")
○ (word) Frequency , and
○ Trial (number).

● Random effects:
○ Subject
○ Word

● Nesting relationships:
○ NativeLanguage  and Subject
○ Frequency  and Word



Lexical decision example (1/)

> r1 <- lmer(RT ~ NativeLanguage + Frequency + Trial +
+            (1 | Subject) + (1 | Word), data = d)
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Lexical decision example (2/)

> summary(r1)
...
Fixed effects:
                 Estimate Std. Error t value
(Intercept)      6.606391   0.041596 158.824
NativeLanguage1 -0.076053   0.028839  -2.637
Frequency       -0.043783   0.006140  -7.130
Trial           -0.009123   0.004310  -2.117
...
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Lexical decision example (3/)

> lrtest(update(r1, . ~ . - Trial), r1)
...
  #Df LogLik Df  Chisq Pr(>Chisq)  
1   6 472.95                       
2   7 470.66  1 4.5795    0.03236 *
...
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Interpretation

Our prediction of a trial's RT is given by summing

● the intercept,
● the coefficient for NativeLanguage, 
● the coefficient for word Frequency times the frequency
● the coefficient for Trial number times the trial number,
● the effect for that Subject, and
● the effect for that Word.
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Subjects are different...

The Subject random intercept recognizes that some subjects have faster or slower 
mean RTs than others. But there are other ways subjects can differ:

● e.g., perhaps some subjects get fatigued faster or slower than average.

If Subject and Trial were both fixed effects, we would simply add a standard 
interaction term; an interaction between a random effect and a fixed effect is known 
as a random slope.
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Lexical decision example (4/)

> r2 <- lmer(RT ~ NativeLanguage + Frequency + Trial +
             (1 + Trial | Subject) + (1 | Word), data = d)

The portion (1 + Trial | Subject) specifies a per-Subject random intercept 
and a per-Subject random slope of Trial.

So we are estimating the overall correlation between trial number and RT (the fixed 
effect), but each subject adjusts the slope of that correlation; the RT-given-trial 
number effect/slope/coefficient for a given subject is given by βTrial + βTrial(subj=n).
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Lexical decision example (5/)

> summary(r2)
...
Fixed effects:
                 Estimate Std. Error t value
(Intercept)      6.606391   0.041596 158.824
NativeLanguage1 -0.076053   0.028839  -2.637
Frequency       -0.043783   0.006140  -7.130
Trial           -0.009123   0.004310  -2.117
...

Not much change in estimate or standard error, here.
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Lexical decision example (6/)

> lrtest(update(r2, . ~ . - Trial), r2)
...
   #Df LogLik Df  Chisq Pr(>Chisq)  
1   8 486.95                       
2   9 483.73  1 6.4321    0.01121 *
...

However, the χ2 statistic is larger, and the associated p-value is smaller because we 
are now accounting for within-subject variation in fatigue.
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Categorical/categorical random slopes

Usually, the fixed portion of a random slope (an interaction between a fixed and 
random effect) is continuously-valued; it is difficult to estimate a random slope when 
the fixed portion is an multinomial categorical effect.
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Generalized mixed effects models

 



Generalizing mixed effects linear regression

With (non-mixed) linear regression we can back off from the assumption that the 
dependent variable is continuous using generalized linear models, which transform 
the raw prediction using a link function.

E.g., logistic regression uses the logit function to map from log-odds to probabilities.

This trick can also be comfortably used with mixed effects models; the only thing we 
need to change is that we need to:

● use the glmer function rather than lmer, and 
● specify a link function (e.g., for logistic regression, family = binomial).
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Disfluency example (1/)

MacFarlane et al. (2017) use mixed effects logistic regression to model disfluency 
use in a sample of children with or without development disorders.

They hypothesized that the relative frequency of content mazes (revisions, 
repetitions, and false starts) and filler mazes (like uh, um, I mean, etc.) would be 
correlated with developmental disorders.
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Disfluency example (2/)

Their dependent variable was binomial: content vs. filler mazes.

Independent variables included fixed effects of:

● diagnosis (TD: typically developing; ASD: autism spectrum disorder; SLI: specific 
language impairment),

● verbal IQ, measured using the age-appropriate Wechsler scales,
● and the interview activity (Play, Description of a Picture, Telling Story From A 

Book, Conversation).
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Disfluency example (3/)

r <- glmer(ContentOrFiller ~ DX + VIQ + Activity +
+          (1 | Subject), data = d, family = binomial)
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Final notes



Model comparison

Because we cannot use the likelihood ratio test to compare models with different 
random effects structure, we cannot easily ask "do we need a random 
intercept/slope?" with null hypothesis testing.



Inestimable models (1/)

It is easy to build a mixed effects model with random effects that cannot be 
estimated from the data. If so you may see a warning like the following:

Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = 
control$checkConv,  :
  Model failed to converge with max|grad| = 0.24984 (tol = 
0.002, component 1)
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = 
control$checkConv,  :
  Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?



Inestimable models (2/)

In some cases, this can be solved by scaling (i.e., centering or, preferably, 
standardizing) all continuous fixed effects and the continuous portion of a random 
slope (in fact that was necessary to make the Trial given Subject random 
intercept converge in the example above).

But if that doesn't work, we have no choice but to omit the random slope, unless we 
turn to much more complex models.



Recommended reading on mixed effects models

Repeating myself from last week, but:

● Baayen (§7) does a good job both motivating and exemplifying mixed models.
● Johnson (§4.4, §7.3-7.4) and Gorman & Johnson (2014: 226-229) also give a 

number of worked examples.

(This is all indicated on the course website.)



Questions? Please take 
them to email, or Slack.
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