
Multi-source grapheme-to-phoneme conversion

1 Introduction
Nearly all speech technologies, including automatic speech recognition, text-to-speech synthe-
sis, and virtual assistants like Alexa, Cortana, the Google Assistant, and Siri require mappings
between words as they are written—graphemic form—and a broad transcription of how they are
pronounced—phonemic form. However, experience has shown that no digital pronunciation dic-
tionary is ever complete; new words are constantly coined, and in some languages, the set of
words speakers can produce is seemingly infinite [1]. Therefore, speech technologies also require
a grapheme-to-phoneme conversion (or G2P) model, a system which predicts the pronunciation of
out-of-vocabulary (OOV) words—i.e., words not found in the pronunciation dictionary—on the
basis of their spelling. Very few writing systems exhibit a completely regular mapping between
grapheme and phoneme, but G2P prediction is feasible in nearly all languages and scripts [2],
though performance varies substantially from language to language and script to script [3–6].
This is true even in English with its notoriously “chaotic” spelling conventions [7].

In a few writing systems, this mapping between grapheme and phoneme is sufficiently con-
sistent that a literate, linguistically-sophisticated speaker can simply enumerate all the necessary
rules. However, such rule-based systems are difficult to design and maintain. Therefore, most
speech engines use machine learning technologies for G2P. Earlier work uses variants of hidden
Markov models [8–11], and more recent work employs sequence-to-sequence neural networks
[3–6, 12, 13]. While these neural sequence-to-sequence models outperform earlier methods, they
still make non-trivial errors. For instance, it would not be at all surprising for a state-of-the-art
English G2P to provide incorrect transcriptions for 10–20% of OOV words. Such errors are likely
to propagate, yielding speech recognition errors or unnatural computer-generated speech that
negatively impact the usability of virtual assistants. Thus our primary goal is to continue to im-
prove the quality and robustness of G2P systems in general. Our second goal in the proposed
study is to develop methods for mapping between pronunciations from different pronunciation
dictionaries from the same language. Pronunciation resources for a language may target differ-
ent dialects and they also may use rather different transcription systems. At present there are
no proven methods for mapping between pronunciations in different dialects or transcription
systems, making it difficult to exploit multiple resources. Such a method would be useful, for
example, for mapping pronunciation data in one dialect to other, less-resourced dialects.

We propose to combine these two goals into a single method, which we term G&P2P. In this
method, we condition our predicted pronunciations not only the on graphemes, but also on side-
pronunciations, pronunciations of the same word from other pronunciation dictionaries in differ-
ent dialects or transcriptions. A pilot study, described below, shows that even a simple method
for fusing the grapheme sequence and a side-pronunciation results in a substantial improvement
over baseline neural sequence-to-sequence models, and we hypothesize that more sophisticated
fusion techniques will result in further improvements, satisfying our first goal. Secondly, G&P2P



CELEX # ' k 1 d j @ n
PronLex aa0 r k ey1 d iy0 ih0 n
WikiPron-UK ɑː ' k e ɪ d i ə n
WikiPron-US ɑ ɹ ' k e ɪ d i ə n

Table 1: Transcriptions of the word Arcadian as it appears in the four databases.

CELEX 73,351
PronLex 99,981
WikiPron-UK 52,995
WikiPron-US 49,132

Table 2: Number of pronunciations found in each of the four English lexicons.

can also be used to map between pronunciations in different dialects or transcription systems,
satisfying our second goal.

2 Data sources
Our primary experiments will target four well-known English pronunciation lexicons:1

• CELEX2 [14]: DISC transcriptions of (Received Pronunciation) British English from the
Collins COBUILD Advanced Dictionary

• PronLex [15]: ARPAbet transcriptions of Mainstream American English from the CALL-
HOME project

• WikiPron-UK [11]: IPA transcriptions of British English extracted from Wiktionary, a free
online dictionary

• WikiPron-US [11]: IPA transcriptions of American English from Wiktionary

Sample transcriptions from these four sources are shown in Table 1, and sizes of these sources are
shown in Table 2. Initial experiments will focus on predicting held-out words from one of these
lexicon, using side-pronunciation data from another lexicon in a different dialect, transcription
system, or both. Table 3 provides a matrix describing the proposed single side-pronunciation
experiments; the column labeled |L1 ∩ L2| gives the number of G&P2P examples available for
training and evaluation. If time allows, we will conduct additional experiments in French (using
WikiPron and Lexique 2 [16]) and Bangla (using WikiPron and the Google lexicon [17]).

1We exclude from consideration the well-known CMU Pronouncing Dictionary because our pilot studies raised
serious concerns about its consistency and quality.



L1 L2
cross- cross- |L1 ∩ L2| |L1 − L2| |L2 − L1|dialect transcription

CELEX PronLex 3 3 57,277 15,333 33,710
CELEX WikiPron-UK 7 3 23,447 49,164 22,213
PronLex WikiPron-US 7 3 24,979 66,008 16,359
WikiPron-UK WikiPron-US 3 7 37,880 7,780 3,458

Table 3: Overlap for single side-pronunciation experiments; |L1 ∩ L2|: # of entries in both L1 and
L2; |L1 − L2|: # of entries in L1 but not in L2; |L2 − L1|: # of entries in L2 but not in L1.

3 Methods
By exploring different combinations of computational models and fusion techniques we will be
able to determine the best practices for incorporating side-pronunciations in G2P and for con-
verting between different standards.

3.1 Models
Followingmuch recent work in G2P [3–6, 11–13]wewill use attentive LSTM [18] and transformer
[19] neural network sequence-to-sequence models. If time allows, additional experiments will be
conducted with pointer-generator networks with either LSTM [20] and transformer [21] encoder
and decoder layers. We will use random search to optimize hyperparameters.

3.2 Fusion
We propose several different techniques for combining the grapheme source with various sources
of side-pronunciations.

String concatenation with disjoint vocabularies One simple method is to concatenate the
source grapheme sequence with with one or more pronunciations from other lexicons, keep-
ing the vocabularies disjoint with “subscripts”. For instance, for the word dog, and using side-
transcriptions from PronLex, the input sequence might be:

d_grapheme o_grapheme g_grapheme d_pronlex ao1_pronlex g_pronlex

Table 4 gives the results of a pilot study using this method.

String concatenation with control symbols Alternatively, one can concatenate grapheme
and side-transcriptions using control symbols indicating the source of each substring [4]. Adapt-
ing the previous example, the input sequence for dog might be:

[grapheme] d o g [pronlex] d ao1 g



LSTM Transformer

CELEX2 7.88 7.73
CELEX2 (+ PronLex) 5.56 5.73
PronLex 9.03 9.32
PronLex (+ CELEX2) 6.49 6.41

Table 4: Word error rates for source concatenation pilot experiment. By concatenating PronLex
and CELEX2 (respectively) side-transcriptions to the grapheme sequence we obtain a 2.17 abso-
lute (28% relative) and 2.62 absolute (29% relative) reduction in WER for CELEX2 and PronLex.

String concatenation with source embeddings Another alternative is to compute learned
embeddings for each of the different sources, and concatenate these to the character embeddings
[22]. Let e be the size of the character embeddings and n the length of the concatenated sequence.
Then we will learn, for each of the t different sources, a source embedding of size f, and the
concatenated embedding matrix fed to the encoder will be of size (e+ f)× n.

Hidden state concatenation Yet another alternative is to use separate encoders for each
source—grapheme sequence or side-pronunciation—and concatenate their hidden states [23].

Multi-target fusion Finally, wewill experiment with a single multi-source, multi-target model
using all available side-pronunciations and a special target control symbol to indicate the desired
output dialect and transcription system. This method, a variant of one commonly used by multi-
lingual machine translation systems [24], can be combined with any of the above fusion methods.

3.3 Evaluation
We will use word error rate (the percentage of words whose pronunciations are incorrectly pre-
dicted) as our primary evaluation metric, with phoneme error rate as a secondary metric.

4 Outcomes
We will first discover and disseminate information about best practices for multi-source G2P. In
addition, we will combine the predicted pronunciations produced by the best model into a single
automatically-generated multi-dialect, multi-transcription system English pronunciation lexicon;
this will released freely to the speech technology community under a Creative Commons license.

5 Approach
Experiments will be conducted by one or more graduate RAs working out of the PI’s lab during
fall 2023. All requested funds will be used to provide RA wages. Spring 2024 will be used to
prepare a paper to be submitted to a conference or workshop sponsored by the Association for
Computational Linguistics.
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