I have never understood the idea that large LMs are uniquely positioned to enable the propagation of disinformation. Let us stipulate, for sake of argument, that large LMs can generate high-quality disinformation and that its artificial quality (i.e., not generated by human writers) cannot be reliably detected either by human readers nor by computational means. At the same time, I know of no reason to suppose that large LMs can generate better (less detectable, more plausible) disinformation than can human writers. Then, it is hard to see what advantage there is to using large LMs for disinformation generation beyond a possible economic benefit realized by firing PR writers and replacing them with “prompt engineers”. Ignoring the dubious economics—copywriters are cheap, engineers are expensive—there is a presupposition that disinformation needs to scale, i.e., be generated in bulk, but I see no reason to suppose this either. Disinformation, it seems to me, comes to us either in the form of “big lies” from sources deemed reputable by journalists and lay audiences (think WMDs), or increasingly, from the crowds (think Qanon).
Author: Kyle Gorman
e- and i-France
It will probably not surprise the reader to see me claim that France and French are both sociopolitical abstractions. France is, like all states, an abstraction, and it is hard to point to physical manifestations of France the state. But we understand that states are a bundle of related institutions with (mostly) shared goals. These institutions give rise to our impression of the Fifth Republic, though at other times in history conflict between these institutions gave rise to revolution. But currently the defining institutions share a sufficient alignment that we can usefully talk as if they are one. This is not so different from the i-language perspective on languages. Each individual “French” speaker has a grammar projected by their brain, and these are (generally speaking) sufficiently similar that we can maintain the fiction that they are the same. The only difference I see is that linguists can give a rather explicit account of any given instance of i-French whereas it’s difficult to describe political institutions in similarly detailed terms (though this may just reflect my own ignorance about modern political science). In some sense, this explicitness at the i-language level makes e-French seem even more artificial than e-France.
Caffeine
I recently stopped consuming caffeine on a daily basis. For at least a dozen years, I’d had a cup of fully caffeinated coffee first thing pretty much every morning. And over the last few years, I also found myself getting a lot of pleasure out of a 3pm espresso shot. I quit because I hoped to improve my sleep. I understand from browsing the literature that caffeine actually has a reasonably long half- and quarter-life, and a morning cup really does negatively impact your sleep 14 hours later. I also understand that caffeine does not “give” you energy; it just temporarily causes your body to consume energy stores at a higher rate. This seems to have worked; I am certainly more refreshed in the morning than I used to be, and I am as active as ever. Only negative thinking and parties keep me up late now.
Having tried to quit caffeine before, I knew that I would have to titrate down gradually to avoid painful headaches. I therefore reduced my consumption gradually, over the course of two weeks, and didn’t experience much pain. I understood, of course, that there is a low-level addictive component to caffeine, the sort of thing that gives you transitory headaches if you don’t get your fix. What I didn’t understand, however, is the degree to which my addiction to caffeine (and that’s the right word here) had seeped into my higher-level consciousness. I found my mind coming up with elaborate justifications for why I needed caffeine. During the first few weeks, my mind was telling me that perhaps I’m just not as smart, handsome, clever, or strong without it. I recognize this as classic addict talk.
I have kept up my coffee ritual. As I have for many years, I start every morning by grinding 10g of fresh roasted beans, heating water to 205°, and using these to prepare about 12 oz of hot coffee. However, this coffee has no more than a tiny trace of caffeine thanks to the solvent-free “Swiss Water” diffusion process. My roaster provides a decent sample of different coffees prepared with this process (with no real markup over the caffeinated variety), including a nice fair trade Sumatran. I am also allowing myself to have one caffeinated cup (at least until I run out of caffeinated beans) a week on Friday morning just before I go the gym to lift weights.
I think I have to recommend going through this detox, if you’re in a state of mind where you can exert a bit of will power.
Character-based speech technology
Right now everyone seems to be moving to character-based speech recognizers and synthesizers. A character-based speech recognizer is an ASR system in which there is no explicit representation of phones, just Unicode codepoints on the output side. Similarly, a character-based synthesizer is a TTS engine without an explicit mapping onto pronunciations, just orthographic inputs. It is generally assumed that the model ought to learn this sort of thing implicitly (and only as needed).
I genuinely don’t understand why this is supposed to be better. Phonemic transcription really does carry more information than orthography, in the vast majority of languages, and making it an explicit target is going to do a better job of guiding the model than hoping the system automatically self-organizes. Neural nets trained for language tasks often have a implicit representation of some linguistically well-defined feature, but they often do better when that feature is made explicit.
My understanding is that end-to-end systems have potential advances over feed-forward systems when information and uncertainty from previous steps can be carried through to help later steps in the pipeline. But that doesn’t seem applicable here. Building these explicit mappings from words to pronunciations and vice versa is not all that hard, and the information used to resolve ambiguity is not particularly local. Cherry-picked examples aside, it is not at all clear that these models can handle locally conditioned pronunciation variants (the article a pronounced uh or aye), homographs (the two pronunciations of bass in English), or highly deficient writing systems (think Perso-Arabic) better than the ordinary pipeline approach. One has to suspect the long tail of these character-based systems are littered with nonsense.
RoboCop
I like a lot of different types of films, but my favorite are the subtextually rich, nuance-light action/science fiction films of the late 1970s, 1980s, and early 1990s, made by directors like Cameron, Carpenter, Cronenberg, McTiernan, Scott, and Verhoeven. Perhaps the most prescient of all of these is RoboCop (1984). The film’s feel is set by over-the-top comic sex and violence and silly diagetic TV clips. In less deft hands, it could easily have become the sort of campy farce best described (or perhaps, denigrated) as a “cult classic”. (This usually means a film is just bad.) But Verhoeven wields sex and violence like a master wields a paintbrush. (I take this to be a sort of self-critique of his childhood aesthetic appreciation of the violence he saw as a boy growing up in Nazi-occupied Holland, not far from the V-2 launch sites.) The film is thematically rich, so much so that one can easily forgive Verhoeven’s apparent decision to leave out (in what is probably the most “dated” element of the film) any overt criticism of policing as an institution. It is ruthlessly critical of what we’d now call neoliberalism, of corporatism, and has much to say about the nature of the self. The theme that strikes me as most prescient is how the film hinges on the very modern realization that, to a striking degree, what we call “AI” is fundamentally just “other people”, alienated and dehumanized by contractual labor relations. Verhoeven could somehow see this coming decades before anything that could reasonably be called AI.
1-on-1 Zoom
If you’re just doing a “meeting” with one other person located in the same country, I don’t see the point of using Zoom. Ordinary phone lines are more reliable and have more familiar acoustic qualities (this is why VoIP sounds worse: unless you’re quite young, you’re probably far more familiar with the 8kHz sampling rate and whatever compression curve the phone system uses). Just call people on the phone!
ACL Workshop on Computation and Written Language
The first ACL Workshop on Computation and Written Language (CAWL) will be held in conjunction with ACL 2023 in Toronto, Canada, on July 13th or 14th 2023 (TBD). It will feature invited talks by Mark Aronoff (Stony Brook University) and Amalia Gnanadesikan (University of Maryland, College Park). We welcome submissions of scientific papers to be presented at the conference and archived in the ACL Anthology. Information on submission and format will be posted at https://cawl.wellformedness.com shortly.
Generalized capitalist realism
One of the most memorable books I’ve read over the last decade or so is Mark Fisher’s Capitalist Realism: Is There No Alternative? (2009). The book is a slim, 81-page pamphlet describing the feeling that “not only is capitalism the only viable political and economic system, but also that it is now impossible even to imagine a coherent alternative to it.” As Fisher explains, a lot of ideological work is done to prevent us from imagining alternatives, including the increasingly capitalist sheen of anti-capitalism, and there are a few areas—the overall non-response to climate change and biosphere-scale threats, for example—where capitalist realism ideology has failed to co-opt dissent, suggesting at least the possibility of an alternative on the horizon, even if Fisher himself does not imagine or present one.
A very clear example of capitalist realism can be found in the ethical altruism (EA) movement, which focuses on getting charity to the less well-off via existing capitalist structures. Singer (2015), the moment’s resident philosopher, justifies this by setting the probability of a viable alternative to capitalism surfacing in any reasonable time frame to be zero. Therefore the most good one can do is to ruthlessly accumulate wealth in the metropole and then give it away where it is most needed. Any synergies between the wealth of the first world and the dire economic conditions in the third world simply have to set aside.
Fisher’s term capitalist realism is a sort of pun on socialist realism, a term for idealized, realistic, literal art from 20th century socialist countries. His use of the term realism is (deliberately, I think) ironic, since both capitalist and socialist realism apply firm ideological filters to the real world. The continental philosophy stuff that this ultimately gets down to is a bit above my pay grade, but I think we can generalize the basic idea: X realism is an ideology that posits and enforces the hypothesis that there is no alternative to X.
If one is willing to go along with this, we can easily talk about, for instance, neural realism, which posits that there is simply no alternative to neural networks for machine learning. You can see this for instance in the debate between “deep learning fundamentalists” like LeCun and the rigor police like Rahimi (see Sproat 2022 for an entertaining discussion): LeCun does seem believe there to be no alternative to employing methods we do not understand with the scientific rigor that Rahimi demands, when it seems obvious that these technologies remain a small part of the overall productive economy. An even clearer example is the term foundation model, which has the fairly obvious connotation that they are crucial to the future of AI. Foundation model realism would also necesarily posit that there is no alternative and discard any disconfirming observation.
References
Fisher, M. 2009. Capitalist Realism: Is There No Alternative? Zero Books.
Singer, P. 2015. The Most Good You Can Do. Yale University Press.
Sproat, R. 2022. Boring problems are sometimes the most interesting. Computational Linguistics 48(2): 483-490.
Codon math
It well-known that there are twenty “proteinogenic” amino acids—those capable of creating proteins—in eukaryotes (i.e., lifeforms with nucleated cells). When biologists first began to realize that DNA synthesizes RNA, which synthesizes amino acids, it was not yet known how many DNA bases (the vocabulary being A, T, C, and G) were required to code an animo acid. It turns out the answer is three: each codon is a base triple, each corresponding to an amino acid. However, one might have deduced that answer ahead of time using some basic algebra, as did Soviet-American polymath George Gamow. Given that one needs at least 20 aminos (and admitting that some redundancy is not impossible), it should be clear that pairs of bases will not suffice to uniquely identify the different animos: 42 = 16, which is less than 20 (+ some epsilon). However, triples will more than suffice: 43 = 64. This holds assuming that the codons are interpreted consistently independently of their context (as Gamow correctly deduced) and whether or not the triplets are interpreted as overlapping or not (Gamow incorrectly guessed that they overlapped, so that a six-base sequence contains four triplet codons; in fact it contains no more than two).
All of this is a long way to link back to the idea of counting entities in phonology. It seems to me we can ask just how many features might be necessary to mark all the distinctions needed. At the same time, Matamoros & Reiss (2016), for instance, following some broader work by Gallistel & King (2009), take it as desirable that a cognitive theory involve a small number of initial entities that give rise to a combinatoric explosion that, at the etic level, is “essentially infinite”. Surely similar thinking can be applied throughout linguistics.
References
Gallistel, C. R., and King, A. P.. 2009. Memory and the Computational
Brain: Why Cognitive Science Will Transform Neuroscience. Wiley-Blackwell.
Matamoros, C. and Reiss, C. 2016. Symbol taxonomy in biophonology. In A. M. Di Sciullo (ed.), Biolinguistic Investigations on the Language Faculty, pages 41-54. John Benjmanins Publishing Company.
Foundation models
It is widely admitted that the use of language in terms like formal language and language model tend to mislead neophytes, since they suggest the common-sense notion (roughly, e-language) rather than the narrow technical sense referring to a set of strings. Scholars at Stanford have been trying to push foundation model as an alternative to what were previously called large language models. But I don’t really like the implication—which I take to be quite salient—that such models ought to serve as the foundation for NLP, AI, whatever. I use large language models in my research, but not that often, and I actually don’t think they have to be part of every practitioner’s toolkit. I can’t help thinking that Stanford is trying to “make fetch happen”.