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C H A P T E R 5

Rewrite Rules
The notion of a grammar as a relation between sets of strings is quite ancient. In the 4th century
BCE, Pān

˙
ini—Pynini’s eponym—proposed a sophisticated computational system (see Penn and

Kiparsky 2012) in which Sanskrit words and phrases are constructed by repeated application
of rewrite rules. These rules consist of a target (for example, in As.t.dhyāyā 6.1.77, [i, i:, u:, r.,
r.:]), a replacement (the corresponding semivowels), and a context in which it is applied (be-
fore another vowel). Priscian, writing in the 6th century CE, proposes a system of rewrite rules
generating inflectional variants of Latin verbs (Matthews 1972). In the 19th century, historical
linguists—particularly those now known as the Neogrammarians—employed rewrite rules to
describe language change. For instance, Grimm’s Law correctly predicts that the initial *p in the
Proto-Indo-European word meaning ‘father’ (cf. Latin pater) surfaces as [f ] in Germanic (e.g.,
Old High German fater). In the 20th century, linguists adapted rewrite rules—some of which
closely resemble historical sound changes—to sketch the morphophonemics of languages such
as Menomini (Bloomfield 1939), Russian (Jakobson 1948), and Modern Hebrew (Chomsky
1951), and began to formalize rewrite systems. One particularly influential formal approach is
the phonological rule notation popularized by Chomsky and Halle (1968). Subsequent work,
reviewed below, establishes strong connections between the notation used by Chomsky and
Halle and the rational relations,1 provides algorithms to compile rewrite rules into finite-state
transducers, and employs them for speech and language technology applications. This chapter
formalizes rewrite rules and shows how they are compiled into finite transducers, combined
into rule cascades, and applied to input strings. Their use is then illustrated with applications
in speech and language technology, including grapheme-to-phoneme conversion, morpho-
logical generation, and text normalization; the latter two applications are discussed in greater
detail in later chapters.

5.1 THEFORMALISM
This section defines context-dependent rewrite rules, a distillation of the formalism popular-
ized by Chomsky and Halle’s 1968 book The Sound Pattern of English, henceforth SPE. While
the phrase “context-dependent” seems to suggest the family of formal languages known as the
context-sensitive languages, this similarity is misleading. In fact, context-dependent rewrite
rules as formalized below are equivalent to rational relations (Johnson 1972) and correspond

1In contrast, syntactic phenomena and the transformational rules used to describe them belong to higher classes of
formal languages (see Shieber 1985 and citations therein).
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to finite-state transducers. Furthermore, since FSTs are closed under composition, an ordered
cascade of context-dependent rewrite rules can be composed into a single FST.

Before we proceed further, however, we need to clear up one possible misconception.
Those familiar with SPE and phonological theories of slightly later vintage will also recall the no-
tion of the morphophonological cycle, which played an important role in that theory of phonol-
ogy. To wit, morphologically complex words were constructed affix-by-affix, and with each af-
fixation process, a battery of phonological rules was applied to the (partially) constructed word.
Under this model, a rule could in principle apply to its own output, a situation which in fact is
not covered by Johnson’s argument for equivalence. However this only becomes a problem if
the number of cycles is unbounded. With a bounded number of cycles, one can always model
the situation simply by composing the FST associated with a rule as many times as it needs
to apply in the derivation. If, for the sake of simplicity, one has a single rule R, and assuming
we represent the i th affixation process to the base B as Ai .B/, and assuming further that we
have no more than k “cycles”, then the resulting word can be computed as B  R ı Ai .B/, for
1 � i � k.

If k is in principle unbounded, then there is a potential problem. This situation would
obtain with a lexical FST that itself is cyclic—i.e., one where the graph that represents the FST
has cycles, not to be confused with the linguistic notion of cyclicity just discussed. As far as we
know, Hankamer (1989) was the first to emphasize the importance of such cases in finite-state
morphology. Hankamer worked with data from Turkish, but in fact it is possible to construct
theoretically unbounded cases even in English. Consider the productive derivational affixation
process that makes verbs from adjectives by affixing -ize; the productive derivational process
that turns verbs ending in -ize into nouns by affixing -ation; and the productive derivational
process that makes adjectives from nouns by adding -al. These can be combined in a theoretically
unbounded way:

• márginal

• márginalize

• marginalizátion

• marginalizátional

• marginalizátionalize

• marginalizationalizátion

• marginalizationalizátional

• marginalizationalizátionalize

• marginalizationalizationalizátion

• …
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Also marked, with an accent mark over the relevant vowel, is the location of the primary stress,
which moves to the right as the complex word is built up. If one accepts the SPE theory that
stress assignment is cyclic, then we would have a potentially unbounded morphological process
where the stress assignment rule would apply to its own output at each affixation cycle. So while
the morphology itself can in principle be handled by a finite state machine with cycles, the stress
assignment rule could not be handled by a finite mechanism since the rule must be applied at
each affixation point.2 But as Hankamer (397) points out for Turkish, if one builds up long
enough cycles of this kind “Turkish speakers and hearers tend to get confused”, and the same
is true for English constructions of the kind we discussed above. So unbounded cyclicity in the
SPE sense is not really a practical problem.

But let us return to the main point. To begin let us consider a simplified version of the
context-dependent rewrite rule formalism. Let † be the alphabet, the set of symbols over which
the rule operates; note that whereas rational relations and finite transducers may have separate
input and output alphabets, this is not permissible for rewrite rules. For phonological rules,
† might consist of all phonemes (and, possibly, their allophones) in the given language; for
a grapheme-to-phoneme rule, it would contain both graphemes and phonemes; and, for text
generation or processing applications, might consist of all 256 bytes. If s; t; l; r 2 †�, then the
following is a possible rewrite rule.

(1) s! t / l r

In this formalism, s ! t is the structural change and l and r is the environment. The final rule
can be read as “s goes to t between l and r”. By convention, one may omit an empty l and/or r ,
so that the following are also possible rules.

(2)
s! t /
s! t / l

s! t / r

Informally speaking, rule (1) specifies a rational relation with domain and range †� such that
all instances of lsr are replaced with ltr but all other substrings in †� are passed through. For
example, let † D fa; b; cg and consider the following rule.3

(3) b! a / b b

Some example input-output pairs for this rule are shown below.

2Needless to say, this is only a problem if one insists that stress assignment must be a cyclic process. In the case at hand,
the problem can easily be addressed by, for example, assuming that each stressable affix, in this case -ation, comes with its
stress marked. Then one would merely need a single rule applying on the fully formed word to destress, or demote the stress
of preceding syllables.

3This example is adapted from Section 11.1 in Bale and Reiss 2018.
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(4)
bbba ! baba
abbbabbbc ! ababababc
cbbca ! cbbca

In the last example, for instance, the conditions for application are not met so input and output
are identical.

5.1.1 DIRECTIONALITY
However, the formalism developed so far does not specify how (3) is to apply to strings
such as abbbba. This ambiguity arises from the fact that for this string, one application of
the rule could block the application of the rule at another site. One might suppose that the
rule is applied to all contexts that meet the structural description, regardless of whether the
contexts overlap. In simultaneous application, both the third and fourth characters of the
input string are flanked by b’s, and both are transduced to a. Alternatively, one might in-
stead suppose that the rule is applied by scanning the input string from the start to the end
of the string, three segments at a time. In left-to-right or right-linear application, how-
ever, when the three-segment window is centered on the third segment—the second b—
the structural description and environment are satisfied because at that point it is flanked by
a b on both sides. Therefore, the rule is applied and that segment is mapped to a. How-
ever, the rule would not apply when this three-segment window was centered on the fourth
segment because that b would no longer have a b to its immediate left. Finally, right-to-
left or left-linear application applies the rule while scanning the input string from the
end to the beginning. An example of applying (3) to an ambiguous string is shown below.

(5)
simultaneous application: abbbba ! abaaba
left-to-right application: abbbba ! ababba
right-to-left application: abbbba ! abbaba

The three application directions correspond directly to where one will find the left-hand and
right-hand environment for the rule, in the input or in the output. For a simultaneous rule,
the left-hand and right-hand environments for an application must occur in the input. With a
left-to-right rule, the left-hand environment must be in the output string and the right-hand
environment must be in the input string; thus, a left-to-right rule application potentially affects
an application of the same rule to a subsequent position in that it might create, or remove, a
left-hand environment in the output for the next application of the rule. And a right-to-left
rule is the reverse of a left-to-right rule: the left-hand environment must occur in the input and
the right-hand environment in the output.4

4Thanks to Jeffrey Heinz for suggesting we present the differences in this way.
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In SPE, all rules are assumed to apply simultaneously (op. cit., 343f.). However, Johnson

(1972: ch. 5) adduces a number of phonological examples where directional application—either
left-to-right or right-to-left, depending—is required. One example of this sort comes from
Latin. In classical inscriptions, no distinction was made between [i, i:] and the front glide [j], or
between [u, u:] and the back glide [w]; they are spelled i and v, respectively. Generally speaking,
when an i or v occurs intervocalically—i.e., flanked by two other vowels—it is realized as a glide.
Some examples are given below; note that c is [k], that intervocalic [j] is subsequently lengthened
to [j.j], and that vowel length is not indicated orthographically.

(6)
caveo ! [ka.we.o:] ‘I am careful’
ovis ! [o.wis] ‘sheep’
peior ! [pej.jor] ‘worse’

What happens to a sequence of two or more intervocalic i’s and v’s? According to Steriade
(1984), just the left-most eligible segment is read as a glide, as shown below.

(7)
avia ! [a.wi.a] ‘grandmother’
lascivia ! [las.ki:wi.a] ‘wantonness’
pavio ! [pa.wi.o:] ‘I beat’

To obtain the correct result, the rules mapping intervocalic i and v to glides must be applied
left-to-right. Were they applied simultaneously, for example, avia and pavio would erroneously
surface as *[aw.ja] and *[paw.jo:], respectively.

Note, however, that directionality of application has no discernable effect for perhaps the
majority of rules, and can often be ignored.

5.1.2 BOUNDARY SYMBOLS
Let ^; $ … † be boundary symbols disjoint from †. Now let ^, the beginning-of-string symbol,
to optionally appear as the left-most symbol in l , and permit $, the end-of-string symbol, to
optionally appear as the right-most symbol in r ; the boundary symbols are not permitted to
appear elsewhere in l or r , or anywhere within the structural description and change. Consider
the following rule, a slight variant of (3).

(8) b! a / ^ b b

To apply this rule, one must scan for string-initial instances of bbb and replace it with bab; given
this specification, directionality is irrelevant. Example input-output pairs are given below.

(9) bbba ! baba
abbbc ! abbbc
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Note that the rule does not apply in the latter case because the bbb sequence appears non-initially.
Or, consider another variant of (3).

(10) b! a / b $

To apply this rule, one must merely scan for string-final instances of bb and replace them with
ba.

5.1.3 GENERALIZATION
Now consider a generalization of rewrite rules, in which a rewrite rule is specified by a five-tuple
consisting of

1. an alphabet †,

2. a structural change � � †� �†�,

3. a left environment L � f^g‹†�,

4. a right environment R � †�f$g‹, and

5. a directionality (one of: “simultaneous”, “left-to-right”, or “right-to-left”).

In other words, the structural change previously expressed by the strings s and t is now a rational
relation, and the left and right environments previously expressed by strings l and r are now
regular languages. The generalization about Latin intervocalic glides immediately above can be
stated as a single rewrite rule (ignoring the lengthening of [j] to [j.j]) such that � D f.u; w/; .i; j/g,
L and R are the set of vowels fa; e; o; u; : : :g, and direction of application is left-to-right.

5.1.4 ABBREVIATORYDEVICES
In the SPE tradition, the structural change and environment are usually specified as bun-
dles of phonological features, an intensional specification of segments, rather than the exten-
sional specifications of languages used above. For instance, ŒCVowel� denotes the set of vowels,
ŒCVowel;CHigh� the set of high vowels, ŒCVocalic;�Vowel� the set of glides, and so on. Using
this notation, the intervocalic formation rule might be written roughly as follows:

(11)
�
CVocalic
CHigh

�
! f�Vowelg / ŒCVowel� ŒCVowel� (left-to-right)

Assuming a finite inventory of segments and a mapping from segments to their features, it is
possible to compute the regular language extension for any featural specification. However, it
is not always the case that a given regular language corresponds to a featural specification. For
instance, consider the following feature system for the vowels of Turkish shown in Table 5.1. A
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Table 5.1: Featural specification for the vowels of Turkish.

[+Front]

[+High]

[–High]

[–Round] [+Round] [–Round] [+Round]

[–Front]

i ü ı u

e ö a o

simple featural specification like ŒCRound� defines the set fü; u; ö; og; a complex featural specifi-
cation bundle such as ŒCFront;CRound� gives the intersection ŒCFront� \ ŒCRound�, the set of
segments which are both front and round, namely fü; ög. All sets defined by the intersection of
one or more featural specifications are known as natural classes. However, not all sets of the
above vowels can be described in the above fashion: for instance, there is no featural specifica-
tion corresponding to the set fe; og under this feature system. Such classes are called unnatural
classes.5 However, in our opinion, the extensional notation’s ability to express unnatural classes
is no defect. When dealing with phonological processes, one can construct natural classes via
intersection of extensionally defined sets of segments. Furthermore, linguists have encountered
many cases in which a superficially similar series of phonological changes lack a unified expres-
sion under current mappings between features and phones. Finally, there is no obvious equiva-
lent to featural specifications for an alphabet consisting of, for instance, orthographic characters
rather than phonemic-phonetic symbols.

Linguists may be familiar with several other types of abbreviatory devices used in SPE
and related work. One such convention are the Boolean variables, traditionally written with
Greek-letter variables, ranging over fC;�g (Zwicky 1965). Johnson (1972: ch. 3) proves that
under certain reasonable assumptions, this is a purely abbreviatory convention and does not in-
crease the expressivity of the SPE formalism. Another such device is the curly brace notation
used to express disjunctions of feature bundles and/or segments, and is equivalent to union. Fi-
nally, SPE uses parentheses-schemata to express certain long-distance processes such as stress
assignment and related phenomena such as the reduction of weak syllables. The SPE schemata
notation was widely critiqued at the time (e.g., Anderson 1974: ch. 9, Kenstowicz and Kisse-
berth 1977:189f., Piggott 1975) and subsequent technical developments, including directional
rule application and the conception of prosodic-metrical structure as belonging to a separate rep-
resentational tier (e.g., Hayes 1980, Idsardi 1992), have largely made this convention obsolete.

5Unnatural classes are by nomeans uncommon in phonological descriptions. For example, the Breton consonantmutation
process known as lenition changes voiceless stops into the corresponding voiced stop (e.g., /t/ ! /d/) and voiced stops into
fricatives. However the set of fricatives produced does not form a natural class, since while /b/ changes to /v/, and /d/ changes
to /z/, both voiced fricatives, /g/ changes to /x/, a voiceless fricative. Therefore, a simple rule that states that a [CVoice] stop
becomes [CContinuant] will not do: one must add a special case for /g/.
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5.1.5 CONSTRAINT-BASEDFORMALISMS
We have little to say about OptimalityTheory (OT; Prince and Smolensky 2004), Harmonic
Grammar (Legendre et al. 2006), and related frameworks which formulate transductions us-
ing violable constraints and global optimization. It is generally believed that one can restrict the
generation procedure (“Gen”) and constraint set (“Con”) so that all OT grammars correspond to
an equivalent rational relation, and to an equivalent finite transducer (e.g., Eisner 1997, Heinz
et al. 2009, Karttunen 1998), and it seems likely that similar equivalencies may hold between
harmonic grammars, weighted rational relations, and weighted finite transducers. However, the
proposed restrictions have largely been ignored by OT practitioners. Furthermore, we find that
finite-state grammars based on rewrite rules—or a mixture of rules and constraints—tend to be
more terse, and more easily understood and maintained, than those expressed via constraints
alone.6 Finally, it seems quite likely that standard forms of Optimality Theory are overly restric-
tive in their inability to express opaquemappings (in the sense of Chandlee et al. 2018) such as
counterfeeding and counterbleeding (Kiparsky 1973).

5.2 RULECOMPILATION
Johnson (1972) proves that context-dependent rewrite rules are rational relations, and this re-
sult can be generalized to weighted rewrite rules by allowing � , the structural change, to be
a weighted rational relation (Mohri and Sproat 1996). Rules which apply only at the end or
beginning of a string are generally trivial to express as a finite transducer. For example, consider
the following rewrite rules, which prepend a prefix p or append a suffix s, respectively.

(12) ; ! fpg / f^g †�

; ! fsg / †� f$g

Such rules are equivalent to the rational relations .; � fpg/ †� and †� .; � fsg/, respectively.
Greater difficulties arise from the possibility of multiple application with or without overlap-
ping contexts for application, and the development of a general-purpose algorithm to com-
pile (weighted) finite-state transducers from algebraic descriptions of rewrite rules proved quite
challenging. Koskenniemi (1983), who developed one of the earliest finite-state grammars, a
comprehensive description of Finnish morphophonology, used rewrite rules that were manually
compiled into finite transducers, state-by-state and arc-by-arc. An early sketch of a rewrite rule
compilation algorithm appeared in an unpublished 1981 lecture by Ronald Kaplan and Martin
Kay, researchers at the Xerox Palo Alto Research Center (PARC), but was not published until
much later (e.g., Kaplan and Kay 1994, Karttunen 1995).

6One example of this can be found in a study of stress in Shanghai compounds by Duanmu (1997); a rule-based analysis
of the phenomenon fits on a single page whereas a roughly equivalent OT analysis of the same facts spans two dozen.
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5.2.1 THEALGORITHM
This section describes a generalization of the Kaplan and Kay-Karttunen rule compilation algo-
rithm by Mohri and Sproat (1996). Their technique consists of the composition of five trans-
ducers, each a simple rational relation. For simplicity of explication we focus on left-to-right
application, though minor variants of the algorithm produce right-to-left or simultaneous rules.
First, if X is a language, let X denote its complement, the language consisting of all strings
which are not elements of X ; i.e., X D fx j x … Xg. Then, let <1; <2; >… † bemarker symbols
disjoint from the alphabet †. Then, given a rule over †� defined by structural change � , left
and right contexts L and R, the constituent transducers are defined as follows. (We remind the
reader that �i denotes the projection onto the input of a relation.)

1. � inserts the > marker before all substrings matching R (i.e., it marks the beginnings of
the righthand environment):
; !> =†� R.

2. � inserts markers <1 and <2 before all substrings matching �i .�/ >:
; ! f<1; <2g=.† [ f>g/� �i .�/7

3. 
 applies the structural change � anywhere �i .�/ is preceded by <1 and followed by >.
It simultaneously deletes the > marker everywhere. This transducer is schematicized in
Figure 5.1.

4. �1 admits only those strings in which L is followed by the <1 marker and deletes all <1

markers satisfying this condition:
<1! ;=†�L .

5. �2 admits only those strings in which all <2 markers are not preceded by L and deletes all
<2 markers satisfying this condition:
<2! ;=†�L

In short, the �, �, and 
 transducers apply the � transduction only between R and <1; �1

guarantees that <1 occurs only when preceded by L, and �2 guarantees that non-application
occurs only when L does not precede. Then, the final context-dependent rewrite rule transducer
is given by � D � ı � ı 
 ı �1 ı �2. An example is given in Figure 5.2.

To obtain right-to-left application, for example, one reverses the process: a � transducer
would insert a < marker after all substrings matching L; � would insert >1; >2 after all strings
matching < �i .�/; 
 would apply the structural change to any � preceded by < and followed
by >1; �1 would admit only those strings in which the >1 marker is followed by R; and �2

would admit only those strings in which >2 is followed by R, with �1 and �2 also deleting their
respective markers. Then, � D � ı � ı 
 ı �1 ı �2.

7This introduces two paths, one with <1 and one with <2, which ultimately correspond to the cases where L does and
does not, respectively, occur to the left of the structural change (see steps 4–5).
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<1:<1
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<1:ǫ

τ:τ
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Figure 5.1: Schematic of the 
 transducer, after Mohri and Sproat 1996, Figure 2. Note the
arcs labeled with the regular language † and the rational relation � ; the corresponding automata
must replace these arc to create 
 .

a:a
a:a

a:a

b:b
b:b

b:a

b:b

c:c

c:c

c:c

3

0

1

2

Figure 5.2: A transducer implementing the rewrite rule fbg � fag = fbg fbg assuming left-to-
right application and † D fa; b; cg.

One further detail is the handling of boundary symbols. When a boundary symbol is
present in the context languages L or R, one can introduce them with a transducer ˇ D

.; � f^g/ †� .; � f$g/, and remove them using the inverse transducer ˇ�1. Note that the bound-
ary symbols are not members of †, but � must treat them much as any other symbol. Therefore,
one must construct � using †0 D † [ f^; $g in place of †. Then, the full construction is given
by �0 D ˇ ı � ı ˇ�1.

Finally, Mohri and Sproat (1996) discuss the extension of the algorithm to the weighted
case. In general � can be a weighted transducer, meaning that a span of arcs introducing the
output side of �o.�/ will be weighted. If, for example, a final stop devoicing rule devoices a final
stop 90% of the time, and leaves it voiced 10% of the time, one can model this with a � that maps,
say, /d/ to /t/ with probability semiring weight 0:9, and leaves it as /d/ with probability semiring
weight 0:1. Then, in the appropriate string-final environment, an underlying /d/ will surface as
/t/ with weight 0:9 and as /d/ with weight 0:1. For a cascade of weighted rules, implemented
using composition, the weights of the individual rules are combined using semiring ˝.
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5.2.2 EFFICIENCYCONSIDERATIONS
The operations constructing the component transducers are relatively efficient, with one excep-
tion: rules introducing markers require the underlying acceptors to be deterministic. Consider
a transducer which inserts a marker # after the regular language L; this corresponds loosely to
several of the constituent transducers used by the Mohri and Sproat construction. In order to
do this we need to construct a finite transducer that allows any sequence of characters in †�,
possibly including previous instances of L, and inserts # after L. Such a transducer is obtained by
inserting an arc with an � input label and a # output label after the final state(s) of L and marking
the new destination state final. This requires that the input acceptor be deterministic so that for
any string l 2 L, there is but one path through the automaton; otherwise the string could bypass
insertion of #. As mentioned above, determinization can be quite expensive, particularly if † is
large or if L is complex. So, for example, if one would like to write a rule that inserts a given word
after a set of words, and this latter set of words numbers in the tens of thousands, then the com-
pilation of said rule will be somewhat slow and the resulting FST quite large. Fortunately there
is usually a way around such problems. In the hypothetical example above, one could arrange
for all words in one’s list of interest to be pre-tagged already with some marker, and condition
the rule’s environment on that marker alone. This will result in more efficient compilation and
application, and produce a more compact rule transducer.

When constructing large or complex rules, it is often wise to apply optimization (sec-
tion 4.1) to the resulting automata.

5.2.3 RULECOMPILATION INPYNINI
The Pynini cdrewrite function is used to compile context-dependent rewrite rules into WF-
STs. The first four arguments, all mandatory, include a transducer defining � , unweighted ac-
ceptors defining the left and right environments L and R—an empty string is used for null
environments—and a cyclic, unweighted acceptor representing †�, the closure over the rule’s
alphabet. The reserved symbol [BOS] (“beginning of string”) can be used to symbolize the left
boundary symbol ^ when constructing L; similarly, [EOS] (“end of string”) can be used to sym-
bolize the right boundary symbol $ when constructing R. The optional keyword argument mode
allows one to specify directionality of application; left-to-right application is the default. Some
example snippets are given below.

• Compile rule (3) for simultaneous application:

rule = pynini.cdrewrite(
pynini.cross("b", "a"),
"b",
"b",
pynini.union("a", "b", "c").closure(),
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direction="sim"

)

• Compile rule (8) for left-to-right application:

rule = pynini.cdrewrite(
pynini.cross("b", "a"),
"[BOS]b",
"b",
pynini.union("a", "b", "c").closure()

)

5.3 RULEAPPLICATION
At first glance, applying a rule to a string may seem as simple as composing the input string
with the rewrite rule transducer and then extracting the output string. However, there are several
complexities which may arise when the rule transducers, or the composition of the input string
and rule, are cyclic, non-deterministic, and/or weighted. Advanced procedures for rewrite rule
application are described below.

5.3.1 LATTICECONSTRUCTION
The first step in rule application is the creation of a lattice of output strings. First, one composes
the input acceptor with the rule transducer, possibly taking advantage of implicit conversion
from strings to acceptors. If the string is not in the domain of the rule, this will result in an
empty automaton, and one may wish to check for this case before continuing.

lattice = string @ rule
assert lattice.start() != pynini.NO_STATE_ID

Then, to convert this automaton from a transducer to an acceptor over output strings, one simply
computes the output projection, optionally applying �-removal afterward. Both operations can
be applied in-place.

lattice.project("output").rmepsilon()

5.3.2 STRINGEXTRACTION
There are several different ways to extract output strings from the lattice. If the rule provides
only one output string—or if the rule transducer is deterministic—then there will be at most
one output path. Similarly, if one wishes to extract only the shortest path from a lattice which
may contain multiple paths, one can first call the shortestpath function. One can then simply
call the string method to retrieve the output string, as shown below.



5.3. RULEAPPLICATION 61
ostring = pynini.shortestpath(lattice).string()

If multiple strings are desired, one can simply extract all output strings using the path iter-
ator so long as the lattice is acyclic. However, a non-deterministic lattice may be ambiguous
(section 4.1), meaning that there are multiple paths generating an output string. To avoid this,
one may wish to determinize the lattice before extracting strings. However, as discussed in sec-
tion 4.1, not all weighted non-deterministic automata (NFAs) are determinizable, and even for
those which are determinizable, the algorithm may produce a deterministic automaton (DFA)
which is exponentially larger than the equivalent NFA.8 If one needs only the n shortest paths,
then Pynini’s shortestpath function with unique=True, will perform just as much determiniza-
tion as is required to find the n shortest paths. This will generate an acyclic, determistic, �-free
acceptor, from which one can retrieve the output strings. This is illustrated in the snippet below.

lattice = pynini.shortestpath(lattice, nshortest=n, unique=True)
ostrings = list(lattice.paths().ostrings())

Alternatively, one may be interested in retrieving all rewrites. In this case, to forestall the pos-
sibility of exponential blowup, one can approximate the full deterministic automaton using
pruned determinization (Rybach et al. 2017). This algorithm computes a DFA approximat-
ing the NFA while preferring shorter paths as measured by path weight. The user must specify
a state threshold—an upper bound for the size of the determinstic FSA—a weight threshold—
a lower bound for the weights of paths in the approximation—or both. In practice, pruned
determinization with a state threshold that is some small multiple of the number of states in
the non-deterministic FSA (e.g., 4) plus a small constant factor (e.g., 256) yields an exactly-
equivalent deterministic FSA for the vast majority of real-world cases, while eliminating the
risk of exponential blowup. This is illustrated below.

state_threshold = 4 * lattice.num_states() + 256
lattice = pynini.determinize(lattice, nstate=state_threshold)
ostrings = list(lattice.paths().ostrings())

Another form of pruned determinization can be used to detect whether there are ties for the
single shortest path and to avoid implementation-defined tie resolution. One can apply pruned
determinization with a weight threshold of N1, which gives an acyclic, deterministic, �-free ac-
ceptor containing all optimal paths, i.e., paths whose weight is the same as that of the single
shortest path. This form of pruning is shown in the following snippet.

one = pynini.Weight.one(lattice.weight_type())
lattice = pynini.determinize(lattice, weight=one)

8For example, Hopcroft et al. (2008:§2.3.6) describe a class of NFAs with n C 1 states for which the equivalent DFA
must have at least 2n states. However, such cases are rare in practice.
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If the resulting DFA contains multiple paths, a tie for the single shortest path is present. One
can then extract all optimal paths from the DFA using a path iterator, as shown in the following
snippet.

ostrings = list(lattice.paths().ostrings())

Note, however, that the shortest path and pruned determinization algorithms are well defined
only over path semirings (subsection 1.5.1).

5.3.3 REWRITINGLIBRARIES
The rewrite module, part of Pynini’s extended library (Appendix C), automates the rewriting
procedures described above. It defines several functions which take an input string (or automa-
ton) and a rule transducer, construct the output lattice, and return either a single output string
or a list thereof.

1. rewrites returns all output strings in an arbitrary order.

2. top_rewrites returns the n shortest-path output strings in an arbitrary order.

3. top_rewrite returns the shortest-path output string using implementation-defined tie res-
olution.

4. one_top_rewrite returns the single shortest-path output string, raising an exception if
there is a tie for the single shortest path.

5. optimal_rewrites returns all output strings which have the same weight as the single
shortest path in an arbitrary order.

The rewritemodule also defines the matches function, which tests if a rule transducer � matches
an input-output string pair. A rule � matches input x to output y if the intersection �o.x ı �/ \ y

is non-null.

5.4 RULE INTERACTION
There are various mechanisms one can use to combine rewrite rules. These are described below.

5.4.1 TWO-LEVELRULES
Influential early work by Koskenniemi (1983) proposes a two-level model of rule interaction.
This approach is, in the authors’ opinion, quite obsolete, but is still useful to motivate more
sophisticated forms of rule interaction. In the two-level model, each rewrite rule is an asser-
tion about relations between the substrings of the relation the rule governs, i.e., it expresses a
constraint on the relation. For instance, Koskenniemi’s composite rules state that for symbols
s; t 2 † the input s must correspond to t in all environments defined by L and R. Two-level rules
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must be surface-true in the sense that they must express exceptionless generalizations about the
relationship between input and output substrings. By definition, then, surface-true rules do not
interact, and can be combined into a single transducer using an algorithm that is functionally
equivalent to intersection (Roark and Sproat 2007:105f.).

As an example, consider the following generalizations regarding the pronunciation of c in
Latin American dialects of Spanish.

1. c is read as [s] when followed by i or e (e.g., cima /sima/ ‘summit’).

2. c is read as [k] elsewhere (e.g., escudo /eskudo/ ‘shield’).

The following surface-true composite rules formalize these generalizations.

(13) fcg � fsg / fi; eg

(14) fcg � fkg / .† � fi; eg/

Note that while the prose description refers to the reading of c as /k/ as the “elsewhere” case,
the two-level model requires one to explicitly define the right-context regular language to avoid
overlap with other rules. While this is not particularly difficult here, the surface-true restriction
can quickly become onerous when working with large, complex collections of rewrite rules.
That said, we note that work in the two-level tradition has continued, and there have been many
refinements and improvements to the formalism, for example Yli-Jyrä and Koskenniemi 2006,
Koskenniemi and Silfverberg 2010, Drobac et al. 2012 and Yli-Jyrä 2013.

5.4.2 CASCADING
The most common alternative to the two-level approach described above is cascading or chain-
ing, in which rules are applied in a fixed, user-specified order, with the output of one rule fed as
input to the next. While a cascade can include surface-true rules, which will apply independently
of any other rule, an earlier rule may also—in the terminology of Kiparsky (1968)—feed—i.e.,
trigger, or create the environment for—or bleed—block, or eliminate the environment for—a
later rule in the course of derivation. By loosening the requirement that rules be surface-true,
one can simplify the rules governing Spanish c. Consider the rule below.

(15) fcg � fkg /

Unlike earlier rules, this rule is not surface-true: a c followed by i or e does not correspond to
surface [k]. However, if one applies (15) to the output of rule (13), this problem is eliminated.
In other words, (15) is applied after earlier rules have eliminated any exceptions and therefore
can apply “across the board”. This is schematicized below.
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(16)

cima escudo orthographic form
sima (13)

eskudo (15)
sima eskudo phonemic form

There are two ways to implement cascading of a sequence of rewrite rules. In the first
method, one simply loops over the rules in specified order. On the first iteration of the loop,
one constructs a lattice following the method described in subsection 5.3.1. On subsequent
iterations, the lattice from the previous iteration is used as input for the next rule in the cascade,
and another lattice is constructed. An example function illustrating this logic is shown below.

def cascade(istring: pynini.FstLike,
rules: Iterable[pynini.Fst]) -> pynini.Fst:

lattice = istring
for rule in rules:

lattice @= rule
assert lattice.start() != pynini.NO_STATE_ID
lattice.project("output").rmepsilon()

return lattice

Then, one can extract strings from the output lattice using the methods introduced above in
subsection 5.3.2. A complete implementation of this procedure is provided by the Pynini ex-
tended library module rule_cascade; its RuleCascade class generalizes the rewrite functions to
rule cascades.

However, it is also straightforward to combine a sequence of context-dependent rewrite
rules into a single transducer. Since weighted finite transducers are closed under composition,
one can create a single rule implementing the cascade by composing the rules in the order in
which they are to be applied, optionally optimizing the resulting transducer. For instance, a cas-
cade of the rule sequence [r1, r2, r3] is equivalent to simple rule application with the trans-
ducer r1 @ r2 @ r3. Composition and optimization of a rule cascade may be computationally
expensive, particularly when the constituent rules are complex or when † is large. One generally
prefers the loop-based cascading described earlier when an automaton produced by composing
multiple rules would be prohibitively large.

5.4.3 EXCLUSION
Occasionally one may wish to apply a sequence of rules so that the successful application of an
earlier rule blocks application of any and all later rules, a form of interaction known as exclusion.
Exclusion is applicable when a series of rules are in competition, and are specified so that they
may fail to apply to certain input strings. For instance, one may wish to compose an irregular



5.4. RULE INTERACTION 65
rule so that it applies to a subset of possible inputs, pre-empting application a general rule that
can apply to any string in †�. As an example, consider the orthographic form of English noun
plurals. Most plurals are formed by appending an -s to the singular form, but there are a number
of exceptions. First, there are “zero” plurals like deer, stem-change plurals such as feet and mice,
irregularly suffixed plurals as in oxen, plurals with f -v alternations as in wolves, and Greco-Latin
plurals like nuclei. The following expression constructs a transducer mapping between singular
and plural forms for nouns with irregular plurals.

irregular = pynini.string_map(
[

"deer",
"fish",
"sheep",
("foot", "feet"),
("mouse", "mice"),
("child", "children"),
("ox", "oxen"),
("wife", "wives"),
("wolf", "wolves"),
("analysis", "analyses"),
("nucleus", "nuclei"),
...

]
)

Only three other rules are required to handle the vast majority of noun plurals. But first, one
must define the relevant inventories, including lowercase orthographic vowels (v), consonants
(c), and the closure of their union (sigma_star).

v = pynini.union("a", "e", "i", "o", "u")
c = pynini.union(

"b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n",
"p", "q", "r", "s", "t", "v", "w", "x", "y", "z"

)
sigma_star = pynini.union(v, c).closure().optimize()

One rule converts a final -y to -ies when -y is immediately preceded by a consonant, as in puppies,
but not when the -y is preceded by a vowel, as in boys.

ies = sigma_star + c + pynini.cross("y", "ies")

Another rule appends -es to stems ending in -s, -sh, -ch, -x, and -z as in churches or faxes. For
this one can use the insert function from the pynutil module, part of Pynini’s extended library
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(see Appendix C). Given an acceptor representing the regular language A, insert constructs a
transducer representing the rational relation ; � A D f.�; ag j a 2 Ag.9

sibilant = pynini.union("s", "sh", "ch", "x", "z")
es = sigma_star + sibilant + pynutil.insert("es")

The third and final rule simply appends an -s. It imposes no conditions on application other than
the requirement that the input be a substring of †�.

s = sigma_star + pynutil.insert("s")

It should be clear that this last rule is not surface-true. But at the same time one cannot obtain
the expected result with cascading either; a cascade of the four rules would produce the erroneous
*wolvesess.

There are two ways to apply these rules so that successful application of an earlier rule
excludes subsequent rules. One method simply uses a loop to apply each rule in user-specified
order. If at any point rule application succeeds—i.e., produces a non-empty lattice—this lattice is
returned. Otherwise, the next rule in the list is applied to the input string. An example function
implementing this procedure is provided below.

def exclude(istring: pynini.FstLike,
rules: Iterable[pynini.Fst]) -> Optional[pynini.Fst]:

for rule in rules:
lattice = istring @ rule
if lattice.start() == pynini.NO_STATE_ID:

continue
return lattice.project("output").rmepsilon()

However, it is also possible to combine all rules into a single transducer and still obtain
the desired exclusion logic. The priority union (Kaplan 1987, Karttunen 1998) of two rational
relations � and � is similar to their union except that the first relation takes precedence over
the second. For instance, suppose that � transduces string a to b, and � transduces a to c. Then
whereas � [ �—their union—maps a to both b and c, their priority union gives precedent to
�, and thus only maps a onto b. Formally, priority union can be defined in terms of elementary
operations over rational relations. Intuitively, the priority union requires one to filter from �

those relations which are governed by �. Assuming that �i .�/ is a subset of †�, �i .�/, the
complement of the domain of �, is given by the regular language †� � �i .�/. Then, the priority
union of � and � is written

� [p � D � [
�
�i .�/ ı �

�
9The pyuntil module also defines a delete function which constructs a transducer implementing A � ; D f.a; �/ j a 2

Ag.
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where [p is the priority union operator. At the automaton level, priority union is well defined
so long as �i .�/ is determinizable, as it will be so long as it is unweighted. An example function
implementing this logic is provided below.

def priority_union(mu: pynini.Fst, nu: pynini.Fst,
sigma_star: pynini.Fst) -> pynini.Fst:

nu_not_mu = (sigma_star - pynini.project(mu, "input")) @ nu
return mu | nu_not_mu

To construct the compound plural rule, one repeatedly applies this function, and then optionally
optimizes the result, as in the following snippet.

rule = priority_union(
irregular,
priority_union(ies,

priority_union(es, s, sigma_star),
sigma_star),

sigma_star,
).optimize()

The plurals module, part of Pynini’s examples library (Appendix D), contains the above
implementation of the pluralization rules. The interested reader might improve this module by
adding to the list of irregulars or by exploiting other subregularities in the system.

5.5 EXAMPLES
Three applications of rewrite rules are now illustrated.

5.5.1 SPANISHGRAPHEME-TO-PHONEMECONVERSION
Speech technologies like automatic speech recognition and text-to-speech synthesis require
mappings between words and their pronunciations. When large, digital pronunciation dictio-
naries are available, various machine learning techniques can be used to induce these map-
pings (e.g., Gorman et al. 2020). But for many orthographies, the relation is simple enough
that one can simply enumerate the necessary rewrite rules and compile them into a transducer.
Spanish is an example of what Rogers (2005) calls a shallow phonemic orthography, because
there is a near one-to-one relation between characters (graphemes) and their pronunciations
(phonemes). Thus, with a small number of rewrite rules, it is possible to correctly predict the
pronunciation of every Spanish word—except for the occasional unassimilated loanword—from
its spelling alone. In fact, the rules governing Spanish pronunciation are sufficiently simple that
only a few rewrite rules are needed. We now sketch out a grapheme-to-phoneme conversion sys-
tem that maps Spanish words onto a broad International Phonetic Alphabet (IPA) transcription
of their pronunciation, using a cascade of context-dependent rewrite rules.
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Let G be the set of graphemes and P the set of phonemes. Then, it is natural to conceive

of grapheme-to-phoneme conversion as a function or relation between strings of graphemes in
G�, henceforth written in italics, and phonemes in P �, henceforth enclosed in square brackets.10
The snippet below defines these two sets for our sketch of Spanish; note that g and p are not
properly disjoint because, for instance, t is pronounced [t].

g = pynini.union(
"a", "á", "b", "c", "d", "e", "é", "f", "g", "h", "i", "í",
"j", "k", "l", "m", "n", "ñ", "o", "ó", "p", "q", "r", "s",
"t", "u", "ú", "ü", "v", "w", "x", "y", "z"

)
p = pynini.union(

"a", "b", "d", "e", "f", "g", "i", "j", "k", "l", "ʝ", "m",
"n", "ɲ", "o", "p", "r", "ɾ", "s", "ʃ", "t", "u", "w", "x", "z"

)

Recall, however, that context-dependent rewrite rules compilation requires that all rules be re-
lations over some †�. Therefore, †� is defined to be .G [ P /�.

sigma_star = pynini.union(g, p).closure().optimize()

The cascade approach to rule interaction is assumed here. The first rewrite rule pronounces
the digraphs ch, ll and qu, handles the readings of j, ñ, v, x, and y, and removes acute accents.
While each of these might be thought of as a logically separate rule, they are all unconditioned,
surface-true generalizations and therefore can be expressed as a single rewrite rule.

r1 = pynini.cdrewrite(
pynini.string_map(

[
("ch", "tʃ"),
("ll", "ʝ"),
("qu", "k"),
("j", "x"),
("ñ", "ɲ"),
("v", "b"),
("x", "s"),
("y", "j"),
("á", "a"),
("é", "e"),
("í", "i"),

10We use square brackets here because while the output of this grapheme-to-phoneme transducer is broad, we do not wish
to make precise claims about the ontological status of these segments in the grammar of Spanish.
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("ó", "o"),
("ú", "u"),
("ü", "w"),

]
),
"",
"",
sigma_star,

).optimize()

The next rule is a simple one; it deletes h, which is normally silent. This rule must be
applied after the previous block so that ch receives the proper reading. Were the rules applied in
the opposite order—or simultaneously, as part of the same rewrite rule—one would not obtain
the proper reading for the ch digraph.

r2 = pynini.cdrewrite(
pynutil.delete("h"),
"",
"",
sigma_star

).optimize()

The third block rewrite rules deals with the pronunciation of r. In intervocalic position,
Spanish has a contrast between r, a flap, as in pero ‘but’, and the trill rr, as in perro ‘dog’. This is
addressed using two ordered rules. The first, r3, maps intervocalic r to the flap; the second, r4,
maps rr—which only occurs intervocalically—onto the trill. One can verify that the two rules
must be applied in the order specified here to obtain the correct result.

v = pynini.union("a", "e", "i", "o", "u")
r3 = pynini.cdrewrite(

pynini.cross("r", "ɾ"),
v,
v,
sigma_star

).optimize()
r4 = pynini.cdrewrite(

pynini.cross("rr", "r"), "", "", sigma_star
).optimize()

The third and final block of rules deals with the realization of c and g. The relevant gen-
eralizations, repeated in part from earlier, are given below.

1. c is read as [s] when followed by i or e, as in cima [sima] ‘summit’.



70 5. REWRITERULES
2. c is read as [k] in all other positions, as in escudo [eskudo] ‘shield’.

3. g is read as [x] when followed by i or e, as in gema [xema] ‘gem’.

4. g is read as [g] in all other positions, as in gato [gato] ‘cat’.

The following rules handle these cases. The first rule, r5, handles the readings of c and g before
the front vowels; the second, r6, maps c to /k/ in all other positions; any remaining g requires
no additional rules.

r5 = pynini.cdrewrite(
pynini.string_map([("c", "s"), ("g", "x")]),
"",
pynini.union("i", "e"),
sigma_star

).optimize()
r6 = pynini.cdrewrite(

pynini.cross("c", "k"), "", "", sigma_star
).optimize()

As defined above, each of the rules operates over a †� containing both graphemes and
phonemes. It may be desirable, however, to restrict the input to grapheme sequences and the
output to phoneme sequences. Let us suppose that the cascade is represented by the transducer
�. This filtering can then be affected by G� ı � ı P �—which intersects the domain with G� and
the range with P �—and optionally optimizing the result, as shown in the following snippet.

rules = r1 @ r2 @ r3 @ r4 @ r5 @ r6
g2p = pynini.closure(g) @ rules @ pynini.closure(p)
g2p.optimize()

These six rewrite rules, applied as a cascade or composed in order, sketch out a simple
grapheme-to-phoneme converter. However, one should note that a few liberties with Spanish
pronunciation have been taken:

• It was assumed that x is always read /s/ but it may also be read as [ks, x, h] depending
on word and dialect.

• The realization of diphthongs such as ie [je] and ue [we] has not been addressed.

• No attempt has been made to handle stress assignment.

Furthermore, allophonic rules such as the lenition of d have been ignored. Such rules are needed
to provide a narrow phonetic transcription, which may be useful in certain speech applications.
An implementation of the above rules can be found in the g2pmodule, part of Pynini’s examples
library (Appendix D), and the interested reader might make improvements to address the lim-
itations mentioned above.
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5.5.2 FINNISHCASE SUFFIXES
Vowel harmony refers to a phonological process in which the properties of one vowel seemingly
assimilate onto another. In some cases, the source and target vowel may be arbitrarily distant,
and at first it might seem like this would make it difficult to encode using context-dependent
rewrite rules. As shown below, this is not the case.

Finnish exhibits vowel harmony in several contexts, including in the distribution of loca-
tive case suffixes, which can be likened to English locational prepositions like in and on. Several
of these suffixes, along with their traditional names and glosses, are listed below.

(17)

-tta/-ttä abessive ‘without’
-lta/-ltä ablative ‘off of ’
-lla/-llä adessive ‘on’
-sta/-stä elative ‘out of ’
-na/-nä essive ‘as a’
-ssa/-ssä inessive ‘in’

Each of the above suffixes above has two allomorphs (i.e., variants): one ending in a and one in ä.
Their distribution is determined by the vowels of the adjective or noun towhich they are attached.
The back vowels—including a, o, and u—select the a-allomorph. The front rounded vowels—
including ä, ö, and y—select the ä-allomorph. In the case that the stem contains both back and
front round vowels, the harmonic vowel closest to the suffix governs harmony. Consonants and
all other vowels are ignored for the purpose of harmony. Finally, the ä-allomorph is the default,
used for those stems which contain neither back nor front rounded vowels. Several adessive case
examples—some from Ringen and Heinämäki (1999)—are given below, with the harmony-
governing stem vowel in bold.

(18)

verolla ‘tax’
gastilla ‘sailor’
kesyllä ‘tame’
kädellä ‘hand’
veljellä ‘brother’
vekillä ‘pleat’

In his finite-state phonology of Finnish, Koskenniemi (1983:76f.) assumes that the har-
monic suffixes contain an archiphonemic or underspecified vowel which is neither front or nor
back. A series of surface-true rules map this archiphonemic vowel, written A, onto a or ä. It is
somewhat easier yet to encode the harmony pattern using a cascade of two rewrite rules: the
first maps A to a in the presence of a back-harmonic stem vowel, and the second maps remain-
ing instances of A to ä. To implement this cascade of rules, one must first define the relevant
segmental inventories, including the three classes of vowels.
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back = pynini.union("a", "o", "u")
front = pynini.union("ä", "ö", "y")
neutral = pynini.union("e", "i")
v = pynini.union(back, front, neutral, "A")
c = pynini.union(

"b", "c", "d", "f", "g", "h", "j", "k", "l", "m",
"n", "p", "q", "r", "s", "t", "v", "w", "x", "z"

)
sigma_star = pynini.union(v, c).closure()

One can then use these to define the two harmony rules, which are composed and jointly opti-
mized. In the first rule, the left context corresponds to an infinite language BN � where B is the
set of back-harmonic vowels and N the set of neutral segments; the second rule applies across
the board.

harmony = (
pynini.cdrewrite(

pynini.cross("A", "a"),
back + pynini.union(neutral, c).closure(),
"",
sigma_star

) @
pynini.cdrewrite(

pynini.cross("A", "ä"), "", "", sigma_star
)

).optimize()

Given an input with the archiphonemic A, the cascade defined above applies the appro-
priate harmony pattern, as shown in the following snippet.

assert rewrite.one_top_rewrite("verollA", harmony) == "verolla"
assert rewrite.one_top_rewrite("kesyllA", harmony) == "kesyllä"

However, for some applications—such as morphological generation, the subject of the follow-
ing chapter—it may be desirable to use this rule to help construct various inflectional forms of
Finnish words. For instance, one could define a function which takes as input the citation form
(the nominative singular) and generates the appropriate adessive form.

def adessive(cf: str) -> str:
return rewrite.one_top_rewrite(cf + "llA", harmony)

An implementation of Finnish locative suffixes along these lines can be found in the case mod-
ule, part of Pynini’s examples library (Appendix D).
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5.5.3 CURRENCYEXPRESSIONTAGGING
Speech technologies like automatic speech recognition (ASR) and text-to-speech synthesis
(TTS) often demand another type of mapping between written and spoken language. Speech
recognizers and synthesizers usually operate over the “spoken domain”, containing entities like
twelve pounds, but not equivalent “written domain” expressions like £12, and speech systems
which process or generate written-domain text (e.g., Pusateri et al. 2017, Shugrina 2010) must
be able to map between the two domains. Sproat et al. (2001) refer to this process as text nor-
malization, and Taylor (2009) refers to entities that require normalization—numbers, dates and
times, currency, and measure expressions, abbreviations, etc.—as semiotic classes. Text nor-
malization has traditionally been performed using finite-state transducers (e.g., Sproat 1996)
although there have been many attempts to exploit machine learning for this task (see Zhang
et al. 2019 for a recent review). Google’s Kestrel text normalization engine, described in detail
by Ebden and Sproat (2014), processes written-domain text in two stages. During the initial
“tokenization and classification” stage, the various semiotic classes are identified in the text.
Then, in the “verbalization” stage, semiotic class-specific finite-state transducer grammars are
applied to each semiotic class span, producing spoken-domain text. The example here is a frag-
ment of the tokenization and classification stage; the more challenging process of verbalization
is illustrated in section 7.3.

Suppose one wishes to construct a finite-state transducer which is capable of “tagging”
English currency expressions like $4.59, €.80, or ¥1400. Such a transducer can naturally be
expressed as an unconditioned context-dependent rewrite rule which matches any currency ex-
pression, inserting XML-style tags around the expression. Assume that such expressions consist
of a currency symbol (e.g., $) or followed by either a sequence of Arabic digits (e.g., 140) or a
decimal to two places (e.g., 4.59, .80). For simplicity, delimiters—like commas—used to group
numbers are ignored. One begins by building acceptors that match the components of a cur-
rency expression so defined. First, the currency symbol acceptor matches the symbol for the
dollar, euro, pound sterling, and yen, and can easily be expanded to handle other symbols.

cur_symbol = pynini.union("$", "€", "£", "¥")

The numeric portion of the expression is matched by cur_numeric below. This is defined using
the constant DIGIT defined by the byte module, part of Pynini’s extended library (Appendix C),
which matches any one Arabic digit. This is used to define acceptors matching the “major” and
“minor” portions of a currency expression.

major = byte.DIGIT ** (0, ...)
minor = byte.DIGIT ** (2, ...)
cur_numeric = major + ("." + minor) ** (0, 1)

We then concatenate the two expressions, producing an acceptor matching written currency
expressions.
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cur_exp = cur_symbol + cur_numeric

To turn this into a tagger automaton, we define � , a transducer which matches the currency
expression and inserts the XML-style tags. We then compile � into a context-dependent rewrite
rule using the closure over the vocabulary (here, bytes) as †�, so that non-currency expression
text is passed through unadulterated. This is illustrated in the following snippet.

tagger = pynini.cdrewrite(
pynutil.insert("<cur>") + cur_exp + pynutil.insert("</cur>"),
"",
"",
byte.BYTE ** (0, ...)

).optimize()

One can then use tagger to rewrite written-domain text with currency tags. However, this
tagger automaton hasmany ambiguities. Consider for instance the input I have £50. Onemight
expect this to be tagged I have <cur>£50</cur>, but the tagger defined above also permits
I have <cur>£5</cur>0, in which the final 0 is left out of the expression. Let us assume that
one would prefer a “greedy” tagging, in which the tags enclose the longest possible sequence.11
One way to enforce this is to assign a negative weight to each Arabic digit matched, and then
compute the shortest path output string, which will necessarily be the one with the longest
possible sequence. Using add_weight, another helper function from the pynutil module, one
can attach a weight to an FST. In the snippet below, this function is used to redefine the numeric
components of the currency matcher.

major = pynutil.add_weight(byte.DIGIT, -1) ** (0, ...)
minor = pynutil.add_weight(byte.DIGIT, -1) ** (2, ...)

If these alternative weighted definitions are used to build cur_exp and tagger as above, then the
shortest-path output string produced by applying the rule using one_top_rewritewill be greedy
in the relevant sense.

The tagger module, part of Pynini’s extended library (Appendix C), automates the con-
struction and application of general-purpose tagger automata.

FURTHERREADING
Bale and Reiss (2018) provide a detailed introduction to the SPE rule notation, conventions for
rule application, phonological features, and natural classes.

Three of the early proponents of context-dependent rewrite rules—Ronald Kaplan, Lauri
Karttunen, and Martin Kay—are recipients of the Association for Computational Linguistics’

11We note that it is not strictly necessary to use weights to achieve a greedy match. This can also be handled using, e.g.,
directed replacement (Karttunen 1996).
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prestigious Lifetime Achievement Award, and all three discuss the import of this technology in
the published transcriptions of their acceptance speeches (Kaplan 2019, Karttunen 2007, Kay
2005).

There have been a number of further refinements to rule compilation procedures since
Kaplan and Kay 1994 and Mohri and Sproat 1996. See, for example Hetherington 2001, Skut
et al. 2003, Yli-Jyrä and Koskenniemi 2006, Yli-Jyrä 2007, and Drobac et al. 2012.

Roark and Sproat (2007: ch. 4) review Koskenniemi’s two-level model and its equivalence
to rational relations.

Sproat (2000) argues that the process of grapheme-to-phoneme conversion can be de-
scribed by a rational relation for all known writing systems; Ebden and Sproat (2014) make a
similar claim for text normalization. Recent work by Jane Chandlee and colleagues, reviewed
by Heinz (2018) and discussed in section 8.3 below, argues that nearly all known phonological
and morphological processes are subsequential functions and can be implemented by deter-
ministic finite-state transducers.

We have put aside the representation of tone and other prosodic-metrical phenomena;
see Yli-Jyrä 2013 for some recent work on this topic.
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