Chapter 3

Regular Expressions and
Languages

We begin this chapter by introducing the notation called “regular expressions.”
These expressions are another type of language-defining notation, which we
sampled briefly in Section 1.1.2. Regular expressions also may be thought of as
a “programming language,” in which we express some important applications,
such as text-search applications or compiler components. Regular expressions
are closely related to nondeterministic finite automata and can be thought of
as a “user-friendly” alternative to the NFA notation for describing software
components.

In this chapter, after defining regular expressions, we show that they are
capable of defining all and only the regular languages. We discuss the way
that regular expressions are used in several software systems. Then, we exam-
ine the algebraic laws that apply to regular expressions. They have significant
resemblance to the algebraic laws of arithmetic, yet there are also some im-
portant differences between the algebras of regular expressions and arithmetic
expressions.

3.1 Regular Expressions

Now, we switch our attention from machine-like descriptions of languages —
deterministic and nondeterministic finite automata — to an algebraic descrip-
tion: the “regular expression.” We shall find that regular expressions can define
exactly the same languages that the various forms of automata describe: the
regular languages. However, regular expressions offer something that automata
do not: a declarative way to express the strings we want to accept. Thus,
regular expressions serve as the input language for many systems that process
strings. Examples include:
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86 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

1. Search commands such as the UNIX grep or equivalent commands for
finding strings that one sees in Web browsers or text-formatting systems.
These systems use a regular-expression-like notation for describing pat-
terns that the user wants to find in a file. Different search systems convert
the regular expression into either a DFA or an NFA, and simulate that
automaton on the file being searched.

2. Lexical-analyzer generators, such as Lex or Flex. Recall that a lexical
analyzer is the component of a compiler that breaks the source program
into logical units (called tokens) of one or more characters that have a
shared significance. Examples of tokens include keywords (e.g., while),
identifiers (e.g., any letter followed by zero or more letters and/or digits),
and signs, such as + or <=. A lexical-analyzer generator accepts descrip-
tions of the forms of tokens, which are essentially regular expressions, and
produces a DFA that recognizes which token appears next on the input.

3.1.1 The Operators of Regular Expressions

Regular expressions denote languages. For a simple example, the regular ex-
pression 01" + 10" denotes the language consisting of all strings that are either
a single 0 followed by any number of 1’s or a single 1 followed by any number
of 0’s. We do not expect you to know at this point how to interpret regular
expressions, so our statement about the language of this expression must be
accepted on faith for the moment. We shortly shall define all the symbols used
in this expression, so you can see why our interpretation of this regular expres-
sion is the correct one. Before describing the regular-expression notation, we
need to learn the three operations on languages that the operators of regular
expressions represent. These operations are:

1. The union of two languages L and M, denoted L U M, is the set of strings
that are in either L or M, or both. For example, if L = {001, 10,111} and
M ={¢,001}, then L U M = {¢,10,001,111}.

2. The concatenation of languages L and M is the set of strings that can
be formed by taking any string in L and concatenating it with any string
in M. Recall Section 1.5.2, where we defined the concatenation of a
pair of strings; one string is followed by the other to form the result of the
concatenation. We denote concatenation of languages either with a dot or
with no operator at all, although the concatenation operator is frequently
called “dot.” For example, if L = {001,10,111} and M = {¢, 001}, then
L.M, or just LM, is {001,10,111,001001,10001,111001}. The first three
strings in LM are the strings in L concatenated with e. Since € is the
identity for concatenation, the resulting strings are the same as the strings
of L. However, the last three strings in LM are formed by taking each
string in L and concatenating it with the second string in M, which is
001. For instance, 10 from L concatenated with 001 from M gives us
10001 for LM.
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3. The closure (or star, or Kleene closure)' of a language L is denoted L*
and represents the set of those strings that can be formed by taking any
number of strings from L, possibly with repetitions (i.e., the same string
may be selected more than once) and concatenating all of them. For
instance, if L = {0, 1}, then L* is all strings of 0’s and 1’s. If L = {0, 11},
then L* consists of those strings of 0’s and 1’s such that the 1’s come in
pairs, e.g., 011, 11110, and €, but not 01011 or 101. More formally, L* is
the infinite union U;>o Lf, where L® = {e}, L' = L, and L%, for i > 1 is
LL--- L (the concatenation of ¢ copies of L).

Example 3.1: Since the idea of the closure of a language is somewhat tricky,
let us study a few examples. First, let L = {0,11}. L° = {€}, independent of
what language L is; the Oth power represents the selection of zero strings from
L. L' = L, which represents the choice of one string from L. Thus, the first
two terms in the expansion of L* give us {¢,0,11}.

Next, consider L?. We pick two strings from L, with repetitions allowed, so
there are four choices. These four selections give us L? = {00,011,110,1111}.
Similarly, L? is the set of strings that may be formed by making three choices
of the two strings in L and gives us

{000, 0011,0110,1100,01111,11011,11110, 111111}

To compute L*, we must compute L! for each i, and take the union of all these
languages. L' has 2° members. Although each L? is finite, the union of the
infinite number of terms L! is generally an infinite language, as it is in our
example.

Now, let L be the set of all strings of 0’s. Note that L is infinite, unlike
our previous example, which is a finite language. However, it is not hard to
discover what L* is. L° = {e}, as always. L' = L. L? is the set of strings that
can be formed by taking one string of 0’s and concatenating it with another
string of 0’s. The result is still a string of 0’s. In fact, every string of 0’s
can be written as the concatenation of two strings of 0’s (don’t forget that e
is a “string of 0’s”; this string can always be one of the two strings that we
concatenate). Thus, L? = L. Likewise, L?> = L, and so on. Thus, the infinite
union L* = L° U L' U L? U --- is L in the particular case that the language L
is the set of all strings of 0’s.

For a final example, §* = {¢}. Note that §° = {e}, while (¢, for any i > 1,
is empty, since we can’t select any strings from the empty set. In fact, §) is one
of only two languages whose closure is not infinite. O

3.1.2 Building Regular Expressions

Algebras of all kinds start with some elementary expressions, usually constants
and/or variables. Algebras then allow us to construct more expressions by

IThe term “Kleene closure” refers to S. C. Kleene, who originated the regular expression
notation and this operator.
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Use of the Star Operator

We saw the star operator first in Section 1.5.2, where we applied it to an
alphabet, e.g., ¥*. That operator formed all strings whose symbols were
chosen from alphabet X. The closure operator is essentially the same,
although there is a subtle distinction of types.

Suppose L is the language containing strings of length 1, and for each
symbol a in ¥ there is a string @ in L. Then, although L and ¥ “look”
the same, they are of different types; L is a set of strings, and ¥ is a set
of symbols. On the other hand, L* denotes the same language as ¥*.

applying a certain set of operators to these elementary expressions and to pre-
viously constructed expressions. Usually, some method of grouping operators
with their operands, such as parentheses, is required as well. For instance,
the familiar arithmetic algebra starts with constants such as integers and real
numbers, plus variables, and builds more complex expressions with arithmetic
operators such as + and x.

The algebra of regular expressions follows this pattern, using constants and
variables that denote languages, and operators for the three operations of Sec-
tion 3.1.1 —union, dot, and star. We can describe the regular expressions
recursively, as follows. In this definition, we not only describe what the le-
gal regular expressions are, but for each regular expression F, we describe the
language it represents, which we denote L(E).

BASIS: The basis consists of three parts:

1. The constants € and ) are regular expressions, denoting the languages {e}
and (), respectively. That is, L(e) = {e}, and L(}) = 0.

2. If a is any symbol, then a is a regular expression. This expression denotes
the language {a}. That is, L(a) = {a}. Note that we use boldface font
to denote an expression corresponding to a symbol. The correspondence,
e.g. that a refers to a, should be obvious.

3. A variable, usually capitalized and italic such as L, is a variable, repre-
senting any language.

INDUCTION: There are four parts to the inductive step, one for each of the
three operators and one for the introduction of parentheses.

1. If E and F are regular expressions, then E + F' is a regular expression
denoting the union of L(E) and L(F'). That is, L(E+F) = L(E) U L(F).

2. If E and F are regular expressions, then E'F is a regular expression denot-
ing the concatenation of L(E) and L(F). That is, L(EF) = L(E)L(F).
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Expressions and Their Languages

Strictly speaking, a regular expression F is just an expression, not a lan-
guage. We should use L(E) when we want to refer to the language that E
denotes. However, it is common usage to refer to say “E” when we really
mean “L(E).” We shall use this convention as long as it is clear we are
talking about a language and not about a regular expression.

Note that the dot can optionally be used to denote the concatenation op-
erator, either as an operation on languages or as the operator in a regular
expression. For instance, 0.1 is a regular expression meaning the same as
01 and representing the language {01}. However, we shall avoid the dot
as concatenation in regular expressions.?

3. If E is a regular expression, then E* is a regular expression, denoting the
closure of L(E). That is, L(E*) = (L(E))*

4. If E is a regular expression, then (E), a parenthesized E, is also a regular
expression, denoting the same language as E. Formally; L((E)) = L(E).

Example 3.2: Let us write a regular expression for the set of strings that
consist of alternating 0’s and 1’s. First, let us develop a regular expression
for the language consisting of the single string 01. We can then use the star
operator to get an expression for all strings of the form 0101 ---01.

The basis rule for regular expressions tells us that 0 and 1 are expressions
denoting the languages {0} and {1}, respectively. If we concatenate the two
expressions, we get a regular expression for the language {01}; this expression is
01. As a general rule, if we want a regular expression for the language consisting
of only the string w, we use w itself as the regular expression. Note that in the
regular expression, the symbols of w will normally be written in boldface, but
the change of font is only to help you distinguish expressions from strings and
should not be taken as significant.

Now, to get all strings consisting of zero or more occurrences of 01, we use
the regular expression (01)*. Note that we first put parentheses around 01, to
avoid confusing with the expression 01*, whose language is all strings consisting
of a 0 and any number of 1’s. The reason for this interpretation is explained
in Section 3.1.3, but briefly, star takes precedence over dot, and therefore the
argument of the star is selected before performing any concatenations.

However, L((01)*) is not exactly the language that we want. It includes
only those strings of alternating 0’s and 1’s that begin with 0 and end with 1.
We also need to consider the possibility that there is a 1 at the beginning and/or

2In fact, UNIX regular expressions use the dot for an entirely different purpose: represent-
ing any ASCII character.
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a 0 at the end. One approach is to construct three more regular expressions that
handle the other three possibilities. That is, (10)* represents those alternating
strings that begin with 1 and end with 0, while 0(10)* can be used for strings
that both begin and end with 0 and 1(01)* serves for strings that begin and
end with 1. The entire regular expression is

(01)* + (10)* 4+ 0(10)* + 1(01)*

Notice that we use the + operator to take the union of the four languages that
together give us all the strings with alternating 0’s and 1’s.

However, there is another approach that yields a regular expression that
looks rather different and is also somewhat more succinct. Start again with the
expression (01)*. We can add an optional 1 at the beginning if we concatenate
on the left with the expression € + 1. Likewise, we add an optional 0 at the end
with the expression € + 0. For instance, using the definition of the 4+ operator:

L(e+1) = L(e) UL(1) = {e} U {1} = {, 1}

If we concatenate this language with any other language L, the € choice gives
us all the strings in L, while the 1 choice gives us 1w for every string w in L.
Thus, another expression for the set of strings that alternate 0’s and 1’s is:

(e +1)(01)*(e + 0)

Note that we need parentheses around each of the added expressions, to make
sure the operators group properly. O

3.1.3 Precedence of Regular-Expression Operators

Like other algebras, the regular-expression operators have an assumed order of
“precedence,” which means that operators are associated with their operands in
a particular order. We are familiar with the notion of precedence from ordinary
arithmetic expressions. For instance, we know that xy+ 2z groups the product zy
before the sum, so it is equivalent to the parenthesized expression (zy) + z and
not to the expression z(y + z). Similarly, we group two of the same operators
from the left in arithmetic, so x —y — z is equivalent to (z — y) — z, and not to
x — (y — z). For regular expressions, the following is the order of precedence for
the operators:

1. The star operator is of highest precedence. That is, it applies only to
the smallest sequence of symbols to its left that is a well-formed regular
expression.

2. Next in precedence comes the concatenation or “dot” operator. After
grouping all stars to their operands, we group concatenation operators
to their operands. That is, all expressions that are justaposed (adjacent,
with no intervening operator) are grouped together. Since concatenation
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is an associative operator it does not matter in what order we group
consecutive concatenations, although if there is a choice to be made, you
should group them from the left. For instance, 012 is grouped (01)2.

3. Finally, all unions (+ operators) are grouped with their operands. Since
union is also associative, it again matters little in which order consecutive
unions are grouped, but we shall assume grouping from the left.

Of course, sometimes we do not want the grouping in a regular expression
to be as required by the precedence of the operators. If so, we are free to use
parentheses to group operands exactly as we choose. In addition, there is never
anything wrong with putting parentheses around operands that you want to
group, even if the desired grouping is implied by the rules of precedence.

Example 3.3: The expression 01* + 1 is grouped (0(1*)) + 1. The star
operator is grouped first. Since the symbol 1 immediately to its left is a legal
regular expression, that alone is the operand of the star. Next, we group the
concatenation between 0 and (1*), giving us the expression (0(1*)). Finally,
the union operator connects the latter expression and the expression to its right,
which is 1.

Notice that the language of the given expression, grouped according to the
precedence rules, is the string 1 plus all strings consisting of a 0 followed by any
number of 1’s (including none). Had we chosen to group the dot before the star,
we could have used parentheses, as (01)* + 1. The language of this expression
is the string 1 and all strings that repeat 01, zero or more times. Had we wished
to group the union first, we could have added parentheses around the union to
make the expression 0(1* + 1). That expression’s language is the set of strings
that begin with 0 and have any number of 1’s following. O

3.1.4 Exercises for Section 3.1

Exercise 3.1.1: Write regular expressions for the following languages:

* a) The set of strings over alphabet {a,b, ¢} containing at least one a and at
least one b.

b) The set of strings of 0’s and 1’s whose tenth symbol from the right end is
1.

¢) The set of strings of 0’s and 1’s with at most one pair of consecutive 1’s.

! Exercise 3.1.2: Write regular expressions for the following languages:

* a) The set of all strings of 0’s and 1’s such that every pair of adjacent 0’s
appears before any pair of adjacent 1’s.

b) The set of strings of 0’s and 1’s whose number of 0’s is divisible by five.
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!! Exercise 3.1.3: Write regular expressions for the following languages:
a) The set of all strings of 0’s and 1’s not containing 101 as a substring.

b) The set of all strings with an equal number of 0’s and 1’s, such that no
prefix has two more 0’s than 1’s, nor two more 1’s than 0’s.

c) The set of strings of 0’s and 1’s whose number of 0’s is divisible by five
and whose number of 1’s is even.

! Exercise 3.1.4: Give English descriptions of the languages of the following
regular expressions:

*a) (1+¢€)(00*1)*0*.
b) (0*1%)*000(0 + 1)*.
c) (0+10)*1".

*! Exercise 3.1.5: In Example 3.1 we pointed out that () is one of two languages
whose closure is finite. What is the other?

3.2 Finite Automata and Regular Expressions

While the regular-expression approach to describing languages is fundamentally
different from the finite-automaton approach, these two notations turn out to
represent exactly the same set of languages, which we have termed the “reg-
ular languages.” We have already shown that deterministic finite automata,
and the two kinds of nondeterministic finite automata — with and without
e-transitions — accept the same class of languages. In order to show that the
regular expressions define the same class, we must show that:

1. Every language defined by one of these automata is also defined by a
regular expression. For this proof, we can assume the language is accepted
by some DFA.

2. Every language defined by a regular expression is defined by one of these
automata. For this part of the proof, the easiest is to show that there is
an NFA with e-transitions accepting the same language.

Figure 3.1 shows all the equivalences we have proved or will prove. An arc from
class X to class Y means that we prove every language defined by class X is
also defined by class Y. Since the graph is strongly connected (i.e., we can get
from each of the four nodes to any other node) we see that all four classes are
really the same.
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Figure 3.1: Plan for showing the equivalence of four different notations for
regular languages

3.2.1 From DFA’s to Regular Expressions

The construction of a regular expression to define the language of any DFA is
surprisingly tricky. Roughly, we build expressions that describe sets of strings
that label certain paths in the DFA’s transition diagram. However, the paths
are allowed to pass through only a limited subset of the states. In an inductive
definition of these expressions, we start with the simplest expressions that de-
scribe paths that are not allowed to pass through any states (i.e., they are single
nodes or single arcs), and inductively build the expressions that let the paths
go through progressively larger sets of states. Finally, the paths are allowed to
go through any state; i.e., the expressions we generate at the end represent all
possible paths. These ideas appear in the proof of the following theorem.

Theorem 3.4: If L = L(A) for some DFA A, then there is a regular expression
R such that L = L(R).

PROOF: Let us suppose that A’s states are {1,2,...,n} for some integer n. No
matter what the states of A actually are, there will be n of them for some finite
n, and by renaming the states, we can refer to the states in this manner, as if
they were the first n positive integers. Our first, and most difficult, task is to
construct a collection of regular expressions that describe progressively broader
sets of paths in the transition diagram of A.

Let us use Rl(-l.“) as the name of a regular expression whose language is the
set of strings w such that w is the label of a path from state i to state j in A,
and that path has no intermediate node whose number is greater than k. Note
that the beginning and end points of the path are not “intermediate,” so there
is no constraint that ¢ and/or j be less than or equal to k.

Figure 3.2 suggests the requirement on the paths represented by REJI-C). There,
the vertical dimension represents the state, from 1 at the bottom to n at the
top, and the horizontal dimension represents travel along the path. Notice that
in this diagram we have shown both ¢ and j to be greater than k, but either or
both could be k or less. Also notice that the path passes through node k twice,
but never goes through a state higher than k, except at the endpoints.

To construct the expressions Rg-“), we use the following inductive definition,
starting at £ = 0 and finally reaching k¥ = n. Notice that when k& = n, there is
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(k)
ij

Figure 3.2: A path whose label is in the language of regular expression R

no restriction at all on the paths represented, since there are no states greater
than n.

BASIS: The basis is £ = 0. Since all states are numbered 1 or above, the
restriction on paths is that the path must have no intermediate states at all.
There are only two kinds of paths that meet such a condition:

1. An arc from node (state) 7 to node j.

2. A path of length 0 that consists of only some node i.

If i # 7, then only case (1) is possible. We must examine the DFA A and
find those input symbols a such that there is a transition from state ¢ to state
j on symbol a.

@ —y,

a) If there is no such symbol a, then R;;

b) If there is exactly one such symbol a, then RE?) =a.

c¢) If there are symbols ay, as, ..., a that label arcs from state ¢ to state j,
then RE?) =a; +ay+-- +ay.

However, if @ = 7, then the legal paths are the path of length 0 and all loops
from ¢ to itself. The path of length O is represented by the regular expression
€, since that path has no symbols along it. Thus, we add e to the various
expressions devised in (a) through (c) above. That is, in case (a) [no symbol a]
the expression becomes ¢, in case (b) [one symbol a] the expression becomes e+a,
and in case (c) [multiple symbols] the expression becomes e +a; +as + - - - + a.

INDUCTION: Suppose there is a path from state i to state j that goes through
no state higher than k. There are two possible cases to consider:

1. The path does not go through state k£ at all. In this case, the label of the

path is in the language of Rz(f*l)
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2. The path goes through state k at least once. Then we can break the path
into several pieces, as suggested by Fig. 3.3. The first goes from state
1 to state k without passing through k, the last piece goes from k to j
without passing through k, and all the pieces in the middle go from k
to itself, without passing through k. Note that if the path goes through
state k only once, then there are no “middle” pieces, just a path from i
to k and a path from k to j. The set of labels for all paths of this type
is represented by the regular expression Rgf_l)(R,(ci_l))*R,i];_l). That is,
the first expression represents the part of the path that gets to state k
the first time, the second represents the portion that goes from k to itself,
zero times, once, or more than once, and the third expression represents
the part of the path that leaves k for the last time and goes to state j.

WA NNV

\/ \/
\/
(k—1) (k—1)
In R i In Rkj

e in R (k=1)
Zero or more strings in R

Figure 3.3: A path from i to j can be broken into segments at each point where
it goes through state k

When we combine the expressions for the paths of the two types above, we
have the expression

k k—1 k—1 k—1)\% p(k—1
Rz(j):Rz('j )+R£k )(Rsck )) Rgcj )

for the labels of all paths from state ¢ to state j that go through no state higher
than k. If we construct these expressions in order of increasing superscript,
then since each Rgf) depends only on expressions with a smaller superscript,
then all expressions are available when we need them.

Eventually, we have RE@ for all 7 and j. We may assume that state 1 is the
start state, although the accepting states could be any set of the states. The
regular expression for the language of the automaton is then the sum (union)
()
1j

of all expressions R;.’ such that state j is an accepting state. O

Example 3.5: Let us convert the DFA of Fig. 3.4 to a regular expression.

This DFA accepts all strings that have at least one 0 in them. To see why, note

that the automaton goes from the start state 1 to accepting state 2 as soon as

it sees an input 0. The automaton then stays in state 2 on all input sequences.
Below are the basis expressions in the construction of Theorem 3.4.

R%?) e+1
rRY o
RO | ¢

RY | (e+0+1)
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1
Start 0 @, 0,1

Figure 3.4: A DFA accepting all strings that have at least one 0

For instance, qu) has the term € because the beginning and ending states are
the same, state 1. It has the term 1 because there is an arc from state 1 to state
1 on input 1. As another example, Rﬁg) is 0 because there is an arc labeled 0
from state 1 to state 2. There is no e term because the beginning and ending
states are different. For a third example, Rg;) = (), because there is no arc from
state 2 to state 1.

Now, we must do the induction part, building more complex expressions
that first take into account paths that go through state 1, and then paths that
can go through states 1 and 2, i.e., any path. The rule for computing the
expressions RS) are instances of the general rule given in the inductive part of
Theorem 3.4:

R} =R + R (R))* R (3.1)

The table in Fig. 3.5 gives first the expressions computed by direct substitution
into the above formula, and then a simplified expression that we can show, by
ad-hoc reasoning, to represent the same language as the more complex expres-
sion.

| By direct substitution | Simplified
RY [ et1+(e+1)(e+1)*(e+1) | 17
RY [0+ (e+1)(e+1)*0 170
R | 0+ 0+ 1)*(e+1) 0
RY | e+ 0+1+0(e+1)"0 e+0+1

Figure 3.5: Regular expressions for paths that can go through only state 1

For example, consider Rg). Its expression is Rg) + RE[P (Rﬂ))*Rgg), which
we get from (3.1) by substituting i =1 and j = 2.

To understand the simplification, note the general principle that if R is any
regular expression, then (e + R)* = R*. The justification is that both sides of
the equation describe the language consisting of any concatenation of zero or
more strings from L(R). In our case, we have (¢ + 1)* = 1*; notice that both
expressions denote any number of 1’s. Further, (e4+1)1* = 1*. Again, it can be
observed that both expressions denote “any number of 1’s.” Thus, the original
expression Rg) is equivalent to 0 + 1*0. This expression denotes the language
containing the string 0 and all strings consisting of a 0 preceded by any number
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of 1’s. This language is also expressed by the simpler expression 1*0.

The simplification of Rﬁ) is similar to the simplification of Rg)

considered. The simplification of Rgll) and Rg;) depends on two rules about
how 0 operates. For any regular expression R:

that we just

1. )R = R() = 0. That is, () is an annihilator for concatenation; it results in
itself when concatenated, either on the left or right, with any expression.
This rule makes sense, because for a string to be in the result of a concate-
nation, we must find strings from both arguments of the concatenation.
Whenever one of the arguments is ), it will be impossible to find a string
from that argument.

2. )+ R=R+ 0 = R. That is, 0 is the identity for union; it results in the
other expression whenever it appears in a union.

As a result, an expression like (e + 1)*(e + 1) can be replaced by . The last
two simplifications should now be clear.

Now, let us compute the expressions RE;). The inductive rule applied with
k = 2 gives us:

R = R} + Ry, (Ryy))"RY) (3:2)
If we substitute the simplified expressions from Fig. 3.5 into (3.2), we get the

expressions of Fig. 3.6. That figure also shows simplifications following the same
principles that we described for Fig. 3.5.

| By direct substitution | Simplified
R | 1" +1°0(e + 0 + 1)*) 1"
R | 170+ 1%0( + 0+ 1)*(e + 0 + 1) 170(0 + 1)*
R | 0+ (e+0+1)(e+0+1)*0 ]
RY | e40+1+(€+0+1)(c+0+1)*(e+0+1) | (0+1)*

Figure 3.6: Regular expressions for paths that can go through any state

The final regular expression equivalent to the automaton of Fig. 3.4 is con-
structed by taking the union of all the expressions where the first state is the
start state and the second state is accepting. In this example, with 1 as the
start state and 2 as the only accepting state, we need only the expression Rg).
This expression is 1*0(0 + 1)*. It is simple to interpret this expression. Its
language consists of all strings that begin with zero or more 1’s, then have a 0,
and then any string of 0’s and 1’s. Put another way, the language is all strings
of 0’s and 1’s with at least one 0. O
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3.2.2 Converting DFA’s to Regular Expressions by
Eliminating States

The method of Section 3.2.1 for converting a DFA to a regular expression al-
ways works. In fact, as you may have noticed, it doesn’t really depend on the
automaton being deterministic, and could just as well have been applied to an
NFA or even an e-NFA. However, the construction of the regular expression
is expensive. Not only do we have to construct about n® expressions for an
n-state automaton, but the length of the expression can grow by a factor of 4
on the average, with each of the n inductive steps, if there is no simplification
of the expressions. Thus, the expressions themselves could reach on the order
of 4™ symbols.

There is a similar approach that avoids duplicating work at some points.
For example, for every i and j, the formula for REJI-C)
orem 3.4 uses the subexpression (Rgf;l))*; the work of writing that expression
is therefore repeated n? times.

The approach to constructing regular expressions that we shall now learn
involves eliminating states. When we eliminate a state s, all the paths that went
through s no longer exist in the automaton. If the language of the automaton
is not to change, we must include, on an arc that goes directly from ¢ to p,
the labels of paths that went from some state g to state p, through s. Since
the label of this arc may now involve strings, rather than single symbols, and
there may even be an infinite number of such strings, we cannot simply list the
strings as a label. Fortunately, there is a simple, finite way to represent all such
strings: use a regular expression.

Thus, we are led to consider automata that have regular expressions as
labels. The language of the automaton is the union over all paths from the
start state to an accepting state of the language formed by concatenating the
languages of the regular expressions along that path. Note that this rule is
consistent with the definition of the language for any of the varieties of automata
we have considered so far. Each symbol a, or € if it is allowed, can be thought
of as a regular expression whose language is a single string, either {a} or {e}.
We may regard this observation as the basis of a state-elimination procedure,
which we describe next.

Figure 3.7 shows a generic state s about to be eliminated. We suppose that
the automaton of which s is a state has predecessor states qi,¢s,- .., g for s
and successor states pi,ps,...,Ppm for s. It is possible that some of the ¢’s are
also p’s, but we assume that s is not among the ¢’s or p’s, even if there is a loop
from s to itself, as suggested by Fig. 3.7. We also show a regular expression on
each arc from one of the ¢’s to s; expression (); labels the arc from ¢;. Likewise,
we show a regular expression P; labeling the arc from s to p;, for all ;. We show
a loop on s with label S. Finally, there is a regular expression R;; on the arc
from g¢; to pj;, for all ¢ and j. Note that some of these arcs may not exist in the
automaton, in which case we take the expression on that arc to be ().

Figure 3.8 shows what happens when we eliminate state s. All arcs involving

in the construction of The-
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Figure 3.7: A state s about to be eliminated

state s are deleted. To compensate, we introduce, for each predecessor g; of s
and each successor p; of s, a regular expression that represents all the paths
that start at ¢;, go to s, perhaps loop around s zero or more times, and finally
go to pj. The expression for these paths is (;S*P;. This expression is added
(with the union operator) to the arc from g; to p;. If there was no arc ¢; = pj,
then first introduce one with regular expression (.

The strategy for constructing a regular expression from a finite automaton
is as follows:

1. For each accepting state ¢, apply the above reduction process to pro-
duce an equivalent automaton with regular-expression labels on the arcs.
Eliminate all states except ¢ and the start state gg.

2. If ¢ # qo, then we shall be left with a two-state automaton that looks like
Fig. 3.9. The regular expression for the accepted strings can be described
in various ways. One is (R + SU*T)*SU*. In explanation, we can go
from the start state to itself any number of times, by following a sequence
of paths whose labels are in either L(R) or L(SU*T). The expression
SU*T represents paths that go to the accepting state via a path in L(S5),
perhaps return to the accepting state several times using a sequence of
paths with labels in L(U), and then return to the start state with a path
whose label is in L(T"). Then we must go to the accepting state, never to
return to the start state, by following a path with a label in L(S). Once
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R+ Q,5%A

R, + Q S*P

m

Ry + 0 S*A

R,, + Q,S*P,

Figure 3.8: Result of eliminating state s from Fig. 3.7

in the accepting state, we can return to it as many times as we like, by
following a path whose label is in L(U).

R U
=8
T

Figure 3.9: A generic two-state automaton

3. If the start state is also an accepting state, then we must also perform
a state-elimination from the original automaton that gets rid of every
state but the start state. When we do so, we are left with a one-state
automaton that looks like Fig. 3.10. The regular expression denoting the
strings that it accepts is R*.

R

Start 6

Figure 3.10: A generic one-state automaton

4. The desired regular expression is the sum (union) of all the expressions
derived from the reduced automata for each accepting state, by rules (2)
and (3).
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0.1

Start Ol 0,1 0,1
——0—©

Figure 3.11: An NFA accepting strings that have a 1 either two or three posi-
tions from the end

Example 3.6: Let us consider the NFA in Fig. 3.11 that accepts all strings of
0’s and 1’s such that either the second or third position from the end has a 1.
Our first step is to convert it to an automaton with regular expression labels.
Since no state elimination has been performed, all we have to do is replace the
labels “0,1” with the equivalent regular expression 0 + 1. The result is shown
in Fig. 3.12.

0+1

Start 1 e 0+1 . 0+1 @
Figure 3.12: The automaton of Fig. 3.11 with regular-expression labels

Let us first eliminate state B. Since this state is neither accepting nor
the start state, it will not be in any of the reduced automata. Thus, we save
work if we eliminate it first, before developing the two reduced automata that
correspond to the two accepting states.

State B has one predecessor, A, and one successor, C. In terms of the
regular expressions in the diagram of Fig. 3.7: Q; =1, P, =0+ 1, Ri; =0
(since the arc from A to C' does not exist), and S = () (because there is no
loop at state B). As a result, the expression on the new arc from A to C is
0+ 10%(0+1).

To simplify, we first eliminate the initial (), which may be ignored in a union.
The expression thus becomes 10*(0 + 1). Note that the regular expression §*
is equivalent to the regular expression e, since

L(0*) = {e} U L) U LO)LO) U - - -

Since all the terms but the first are empty, we see that L(0*) = {e}, which
is the same as L(e). Thus, 10*(0 + 1) is equivalent to 1(0 + 1), which is the
expression we use for the arc A — C in Fig. 3.13.

Now, we must branch, eliminating states C' and D in separate reductions.
To eliminate state C, the mechanics are similar to those we performed above
to eliminate state B, and the resulting automaton is shown in Fig. 3.14.

In terms of the generic two-state automaton of Fig. 3.9, the regular expres-
sions from Fig. 3.14 are: R=0+4+1,S=10+1)(0+1), 7T =0, and U = 0.
The expression U* can be replaced by ¢, i.e., eliminated in a concatenation;
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0+1

Start O 10+1) 0+1
—o—0—@

Figure 3.13: Eliminating state B

0+1

Start O 10+ 10 +1)

Figure 3.14: A two-state automaton with states A and D

the justification is that 0* = €, as we discussed above. Also, the expression
SU*T is equivalent to (), since T, one of the terms of the concatenation, is ().
The generic expression (R + SU*T)*SU* thus simplifies in this case to R*S,
or (0+1)*1(0+1)(0 + 1). In informal terms, the language of this expression
is any string ending in 1, followed by two symbols that are each either 0 or
1. That language is one portion of the strings accepted by the automaton of
Fig. 3.11: those strings whose third position from the end has a 1.

Now, we must start again at Fig. 3.13 and eliminate state D instead of C.
Since D has no successors, an inspection of Fig. 3.7 tells us that there will be
no changes to arcs, and the arc from C to D is eliminated, along with state D.
The resulting two-state automaton is shown in Fig. 3.15.

This automaton is very much like that of Fig. 3.14; only the label on the arc
from the start state to the accepting state is different. Thus, we can apply the
rule for two-state automata and simplify the expression to get (0+1)*1(0+1).
This expression represents the other type of string the automaton accepts: those
with a 1 in the second position from the end.

All that remains is to sum the two expressions to get the expression for the
entire automaton of Fig. 3.11. This expression is

(0+1)*1(0+1) + (0 +1)*1(0 + 1)(0 + 1)

O

3.2.3 Converting Regular Expressions to Automata

We shall now complete the plan of Fig. 3.1 by showing that every language L
that is L(R) for some regular expression R, is also L(E) for some e-NFA E. The
proof is a structural induction on the expression R. We start by showing how
to construct automata for the basis expressions: single symbols, €, and (). We
then show how to combine these automata into larger automata that accept the
union, concatenation, or closure of the language accepted by smaller automata.

All of the automata we construct are e-NFA’s with a single accepting state.
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Ordering the Elimination of States

As we observed in Example 3.6, when a state is neither the start state
nor an accepting state, it gets eliminated in all the derived automata.
Thus, one of the advantages of the state-elimination process compared
with the mechanical generation of regular expressions that we described
in Section 3.2.1 is that we can start by eliminating all the states that
are neither start nor accepting, once and for all. We only have to begin
duplicating the reduction effort when we need to eliminate some accepting
states.

Even there, we can combine some of the effort. For instance, if there
are three accepting states p, ¢, and r, we can eliminate p and then branch
to eliminate either q or r, thus producing the automata for accepting states
r and g, respectively. We then start again with all three accepting states
and eliminate both ¢ and r to get the automaton for p.

0+1

Start O 10+1)

Figure 3.15: Two-state automaton resulting from the elimination of D

Theorem 3.7 : Every language defined by a regular expression is also defined
by a finite automaton.

PROOF: Suppose L = L(R) for a regular expression R. We show that L = L(E)
for some e-NFA E with:

1. Exactly one accepting state.
2. No arcs into the initial state.

3. No arcs out of the accepting state.

The proof is by structural induction on R, following the recursive definition of
regular expressions that we had in Section 3.1.2.

BASIS: There are three parts to the basis, shown in Fig. 3.16. In part (a) we
see how to handle the expression e. The language of the automaton is easily
seen to be {e}, since the only path from the start state to an accepting state
is labeled e. Part (b) shows the construction for (). Clearly there are no paths
from start state to accepting state, so () is the language of this automaton.
Finally, part (c) gives the automaton for a regular expression a. The language
of this automaton evidently consists of the one string a, which is also L(a). It
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Figure 3.16: The basis of the construction of an automaton from a regular
expression

is easy to check that these automata all satisfy conditions (1), (2), and (3) of
the inductive hypothesis.

INDUCTION: The three parts of the induction are shown in Fig. 3.17. We
assume that the statement of the theorem is true for the immediate subexpres-
sions of a given regular expression; that is, the languages of these subexpressions
are also the languages of e-NFA’s with a single accepting state. The four cases
are:

1. The expression is R+ S for some smaller expressions R and S. Then the
automaton of Fig. 3.17(a) serves. That is, starting at the new start state,
we can go to the start state of either the automaton for R or the automa-
ton for S. We then reach the accepting state of one of these automata,
following a path labeled by some string in L(R) or L(S), respectively.
Once we reach the accepting state of the automaton for R or S, we can
follow one of the e-arcs to the accepting state of the new automaton.
Thus, the language of the automaton in Fig. 3.17(a) is L(R) U L(S).

2. The expression is RS for some smaller expressions R and S. The automa-
ton for the concatenation is shown in Fig. 3.17(b). Note that the start
state of the first automaton becomes the start state of the whole, and the
accepting state of the second automaton becomes the accepting state of
the whole. The idea is that the only paths from start to accepting state go
first through the automaton for R, where it must follow a path labeled by
a string in L(R), and then through the automaton for S, where it follows
a path labeled by a string in L(S). Thus, the paths in the automaton of
Fig. 3.17(b) are all and only those labeled by strings in L(R)L(S).

3. The expression is R* for some smaller expression R. Then we use the
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P
poncy

(a

Figure 3.17: The inductive step in the regular-expression-to-e-NFA construction

automaton of Fig. 3.17(c). That automaton allows us to go either:

(a) Directly from the start state to the accepting state along a path
labeled €. That path lets us accept €, which is in L(R*) no matter
what expression R is.

(b) To the start state of the automaton for R, through that automaton
one or more times, and then to the accepting state. This set of paths
allows us to accept strings in L(R), L(R)L(R), L(R)L(R)L(R), and
so on, thus covering all strings in L(R*) except perhaps ¢, which was
covered by the direct arc to the accepting state mentioned in (3a).

4. The expression is (R) for some smaller expression R. The automaton
for R also serves as the automaton for (R), since the parentheses do not
change the language defined by the expression.

It is a simple observation that the constructed automata satisfy the three con-
ditions given in the inductive hypothesis — one accepting state, with no arcs
into the initial state or out of the accepting state. O
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Figure 3.18: Automata constructed for Example 3.8

Example 3.8: Let us convert the regular expression (0 + 1)*1(0 + 1) to an
e-NFA. Our first step is to construct an automaton for 0 + 1. We use two
automata constructed according to Fig. 3.16(c), one with label 0 on the arc
and one with label 1. These two automata are then combined using the union
construction of Fig. 3.17(a). The result is shown in Fig. 3.18(a).

Next, we apply to Fig. 3.18(a) the star construction of Fig. 3.17(c). This
automaton is shown in Fig. 3.18(b). The last two steps involve applying the
concatenation construction of Fig. 3.17(b). First, we connect the automaton of
Fig. 3.18(b) to another automaton designed to accept only the string 1. This
automaton is another application of the basis construction of Fig. 3.16(c) with
label 1 on the arc. Note that we must create a new automaton to recognize 1;
we must not use the automaton for 1 that was part of Fig. 3.18(a). The third
automaton in the concatenation is another automaton for 0 + 1. Again, we
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must create a copy of the automaton of Fig. 3.18(a); we must not use the same
copy that became part of Fig. 3.18(b). The complete automaton is shown in
Fig. 3.18(c). Note that this e-NFA, when e-transitions are removed, looks just
like the much simpler automaton of Fig. 3.15 that also accepts the strings that
have a 1 in their next-to-last position. O

3.2.4 Exercises for Section 3.2

Exercise 3.2.1: Here is a transition table for a DFA:

[0 [1
—q || 2| N
q2 || 43 | q1
*q3 || 43 | 42

(0)

*a) Give all the regular expressions R;;’. Note: Think of state g; as if it were

the state with integer number i.

*b) Give all the regular expressions R, Try to simplify the expressions as

ij
much as possible.
c) Give all the regular expressions Rg). Try to simplify the expressions as
much as possible.

d) Give a regular expression for the language of the automaton.

* ¢) Construct the transition diagram for the DFA and give a regular expres-
sion for its language by eliminating state ga.

Exercise 3.2.2: Repeat Exercise 3.2.1 for the following DFA:

[0 [1
—q1 || 92 | g3
q2 || 491 | 43
*q3 || 42 | 1

Note that solutions to parts (a), (b) and (e) are not available for this exercise.

Exercise 3.2.3: Convert the following DFA to a regular expression, using the
state-elimination technique of Section 3.2.2.
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Exercise 3.2.4: Convert the following regular expressions to NFA’s with e-
transitions.

*a) 01,
b) (0 +1)01.
c¢) 00(0 + 1)*.

Exercise 3.2.5: Eliminate e-transitions from your e-NFA’s of Exercise 3.2.4.
A solution to part (a) appears in the book’s Web pages.

Exercise 3.2.6: Let A = (Q, X, 6, q0, {gr}) be an e-NFA such that there are no
transitions into go and no transitions out of gy. Describe the language accepted
by each of the following modifications of A, in terms of L = L(A):

* a) The automaton constructed from A by adding an e-transition from gy to
do-

*b) The automaton constructed from A by adding an e-transition from g
to every state reachable from gy (along a path whose labels may include
symbols of ¥ as well as ¢€).

c¢) The automaton constructed from A by adding an e-transition to ¢y from
every state that can reach gy along some path.

d) The automaton constructed from A by doing both (b) and (c).

Exercise 3.2.7: There are some simplifications to the constructions of Theo-
rem 3.7, where we converted a regular expression to an e-NFA. Here are three:

1. For the union operator, instead of creating new start and accepting states,
merge the two start states into one state with all the transitions of both
start states. Likewise, merge the two accepting states, having all transi-
tions to either go to the merged state instead.

2. For the concatenation operator, merge the accepting state of the first
automaton with the start state of the second.

3. For the closure operator, simply add e-transitions from the accepting state
to the start state and vice-versa.

Each of these simplifications, by themselves, still yield a correct construction;
that is, the resulting e-NFA for any regular expression accepts the language of
the expression. Which subsets of changes (1), (2), and (3) may be made to the
construction together, while still yielding a correct automaton for every regular
expression?

Exercise 3.2.8: Give an algorithm that takes a DFA A and computes the
number of strings of length n (for some given n, not related to the number
of states of A) accepted by A. Your algorithm should be polynomial in both
n and the number of states of A. Hint: Use the technique suggested by the
construction of Theorem 3.4.
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3.3 Applications of Regular Expressions

A regular expression that gives a “picture” of the pattern we want to recognize
is the medium of choice for applications that search for patterns in text. The
regular expressions are then compiled, behind the scenes, into deterministic or
nondeterministic automata, which are then simulated to produce a program
that recognizes patterns in text. In this section, we shall consider two impor-
tant classes of regular-expression-based applications: lexical analyzers and text
search.

3.3.1 Regular Expressions in UNIX

Before seeing the applications, we shall introduce the UNIX notation for ex-
tended regular expressions. This notation gives us a number of additional ca-
pabilities. In fact, the UNIX extensions include certain features, especially the
ability to name and refer to previous strings that have matched a pattern, that
actually allow nonregular languages to be recognized. We shall not consider
these features here; rather we shall only introduce the shorthands that allow
complex regular expressions to be written succinctly.

The first enhancement to the regular-expression notation concerns the fact
that most real applications deal with the ASCII character set. Our examples
have typically used a small alphabet, such as {0,1}. The existence of only two
symbols allowed us to write succinct expressions like 0 + 1 for “any character.”
However, if there were 128 characters, say, the same expression would involve
listing them all, and would be highly inconvenient to write. Thus, UNIX reg-
ular expressions allow us to write character classes to represent large sets of
characters as succinctly as possible. The rules for character classes are:

e The symbol . (dot) stands for “any character.”

e The sequence [ajas - - - ar] stands for the regular expression
ar +az+---+ag

This notation saves about half the characters, since we don’t have to write
the +-signs. For example, we could express the four characters used in C
comparison operators by [<>=!].

e Between the square braces we can put a range of the form z-y to mean all
the characters from z to y in the ASCII sequence. Since the digits have
codes in order, as do the upper-case letters and the lower-case letters, we
can express many of the classes of characters that we really care about
with just a few keystrokes. For example, the digits can be expressed
[0-9], the upper-case letters can be expressed [A-Z], and the set of all
letters and digits can be expressed [A-Za-z0-9]. If we want to include a
minus sign among a list of characters, we can place it first or last, so it is
not confused with its use to form a character range. For example, the set
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of digits, plus the dot, plus, and minus signs that are used to form signed
decimal numbers may be expressed [-+.0-9]. Square brackets, or other
characters that have special meanings in UNIX regular expressions can
be represented as characters by preceding them with a backslash (\).

e There are special notations for several of the most common classes of
characters. For instance:

a) [:digit:] is the set of ten digits, the same as [0-9].3
b) [:alpha:] stands for any alphabetic character, as does [A-Za-z].

¢) [:alnum:] stands for the digits and letters (alphabetic and numeric
characters), as does [A-Za-z0-9].

In addition, there are several operators that are used in UNIX regular ex-
pressions that we have not encountered previously. None of these operators
extend what languages can be expressed, but they sometimes make it easier to
express what we want.

1. The operator | is used in place of + to denote union.

2. The operator ? means “zero or one of.” Thus, R? in UNIX is the same
as € + R in this book’s regular-expression notation.

3. The operator + means “one or more of.” Thus, R+ in UNIX is shorthand
for RR* in our notation.

4. The operator {n} means “n copies of.” Thus, R{5} in UNIX is shorthand
for RRRRR.

Note that UNIX regular expressions allow parentheses to group subexpressions,
just as for the regular expressions described in Section 3.1.2, and the same
operator precedence is used (with 7, + and {n} treated like * as far as precedence
is concerned). The star operator * is used in UNIX (without being a superscript,
of course) with the same meaning as we have used.

3.3.2 Lexical Analysis

One of the oldest applications of regular expressions was in specifying the com-
ponent of a compiler called a “lexical analyzer.” This component scans the
source program and recognizes all tokens, those substrings of consecutive char-
acters that belong together logically. Keywords and identifiers are common
examples of tokens, but there are many others.

3The notation [:digit:] has the advantage that should some code other than ASCII be
used, including a code where the digits did not have consecutive codes, [:digit:] would still
represent [0123456789], while [0-9] would represent whatever characters had codes between
the codes for 0 and 9, inclusive.
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The Complete Story for UNIX Regular Expressions

The reader who wants to get the complete list of operators and short-
hands available in the UNIX regular-expression notation can find them
in the manual pages for various commands. There are some differences
among the various versions of UNIX, but a command like man grep will
get you the notation used for the grep command, which is fundamental.
“Grep” stands for “Global (search for) Regular Expression and Print,”
incidentally.

The UNIX command lex and its GNU version flex, accept as input a list of
regular expressions, in the UNIX style, each followed by a bracketed section of
code that indicates what the lexical analyzer is to do when it finds an instance
of that token. Such a facility is called a lexical-analyzer generator, because it
takes as input a high-level description of a lexical analyzer and produces from
it a function that is a working lexical analyzer.

Commands such as lex and flex have been found extremely useful because
the regular-expression notation is exactly as powerful as we need to describe
tokens. These commands are able to use the regular-expression-to-DFA con-
version process to generate an efficient function that breaks source programs
into tokens. They make the implementation of a lexical analyzer an afternoon’s
work, while before the development of these regular-expression-based tools, the
hand-generation of the lexical analyzer could take months. Further, if we need
to modify the lexical analyzer for any reason, it is often a simple matter to
change a regular expression or two, instead of having to go into mysterious
code to fix a bug.

Example 3.9: In Fig. 3.19 is an example of partial input to the lex command,
describing some of the tokens that are found in the language C. The first line
handles the keyword else and the action is to return a symbolic constant (ELSE
in this example) to the parser for further processing. The second line contains
a regular expression describing identifiers: a letter followed by zero or more
letters and/or digits. The action is first to enter that identifier in the symbol
table if not already there; lex isolates the token found in a buffer, so this piece
of code knows exactly what identifier was found. Finally, the lexical analyzer
returns the symbolic constant ID, which has been chosen in this example to
represent identifiers.

The third entry in Fig. 3.19 is for the sign >=, a two-character operator.
The last example we show is for the sign =, a one-character operator. There
would in practice appear expressions describing each of the keywords, each of
the signs and punctuation symbols like commas and parentheses, and families
of constants such as numbers and strings. Many of these are very simple,
just a sequence of one or more specific characters. However, some have more
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else {return(ELSE) ;}

[A-Za-z] [A-Za-z0-9]* {code to enter the found identifier
in the symbol table;
return(ID);
}

>= {return(GE) ;}

= {return(ASGN) ;}

Figure 3.19: A sample of lex input

of the flavor of identifiers, requiring the full power of the regular-expression
notation to describe. The integers, floating-point numbers, character strings,
and comments are other examples of sets of strings that profit from the regular-
expression capabilities of commands like lex. 0O

The conversion of a collection of expressions, such as those suggested in
Fig. 3.19, to an automaton proceeds approximately as we have described for-
mally in the preceding sections. We start by building an automaton for the
union of all the expressions. This automaton in principle tells us only that
some token has been recognized. However, if we follow the construction of The-
orem 3.7 for the union of expressions, the e-NFA state tells us exactly which
token has been recognized.

The only problem is that more than one token may be recognized at once;
for instance, the string else matches not only the regular expression else but
also the expression for identifiers. The standard resolution is for the lexical-
analyzer generator to give priority to the first expression listed. Thus, if we
want keywords like else to be reserved (not usable as identifiers), we simply
list them ahead of the expression for identifiers.

3.3.3 Finding Patterns in Text

In Section 2.4.1 we introduced the notion that automata could be used to search
efficiently for a set of words in a large repository such as the Web. While the
tools and technology for doing so are not so well developed as that for lexical
analyzers, the regular-expression notation is valuable for describing searches
for interesting patterns. As for lexical analyzers, the capability to go from
the natural, descriptive regular-expression notation to an efficient (automaton-
based) implementation offers substantial intellectual leverage.

The general problem for which regular-expression technology has been found
useful is the description of a vaguely defined class of patterns in text. The
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vagueness of the description virtually guarantees that we shall not describe
the pattern correctly at first — perhaps we can never get exactly the right
description. By using regular-expression notation, it becomes easy to describe
the patterns at a high level, with little effort, and to modify the description
quickly when things go wrong. A “compiler” for regular expressions is useful
to turn the expressions we write into executable code.

Let us explore an extended example of the sort of problem that arises in
many Web applications. Suppose that we want to scan a very large number of
Web pages and detect addresses. We might simply want to create a mailing
list. Or, perhaps we are trying to classify businesses by their location so that
we can answer queries like “find me a restaurant within 10 minutes drive of
where I am now.”

We shall focus on recognizing street addresses in particular. What is a street
address? We’ll have to figure that out, and if, while testing the software, we
find we miss some cases, we’ll have to modify the expressions to capture what
we were missing. To begin, a street address will probably end in “Street” or its
abbreviation, “St.” However, some people live on “Avenues” or “Roads,” and
these might be abbreviated in the address as well. Thus, we might use as the
ending for our regular expression something like:

Street|St\. |Avenue|Ave\. |Road |Rd\.

In the above expression, we have used UNIX-style notation, with the vertical
bar, rather than +, as the union operator. Note also that the dots are escaped
with a preceding backslash, since dot has the special meaning of “any character”
in UNIX expressions, and in this case we really want only the period or “dot”
character to end the three abbreviations.

The designation such as Street must be preceded by the name of the street.
Usually, the name is a capital letter followed by some lower-case letters. We
can describe this pattern by the UNIX expression [A-Z][a-z]*. However,
some streets have a name consisting of more than one word, such as Rhode
Island Avenue in Washington DC. Thus, after discovering that we were missing
addresses of this form, we could revise our description of street names to be

’[A-Z] [a-z]*( [A-Z][a-z]*)*’

The expression above starts with a group consisting of a capital and zero
or more lower-case letters. There follow zero or more groups consisting of a
blank, another capital letter, and zero or more lower-case letters. The blank
is an ordinary character in UNIX expressions, but to avoid having the above
expression look like two expressions separated by a blank in a UNIX command
line, we are required to place quotation marks around the whole expression.
The quotes are not part of the expression itself.

Now, we need to include the house number as part of the address. Most
house numbers are a string of digits. However, some will have a letter follow-
ing, as in “123A Main St.” Thus, the expression we use for numbers has an
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optional capital letter following: [0-9]+[A-Z]7. Notice that we use the UNIX
+ operator for “one or more” digits and the ? operator for “zero or one” capital
letter. The entire expression we have developed for street addresses is:

> [0-9]1+[A-Z]7 [A-Z][a-z]l*( [A-Z][a-z]*)=*
(Street |St\. |Avenuel|Ave\. |Road |Rd\.)"’

If we work with this expression, we shall do fairly well. However, we shall
eventually discover that we are missing;:

1. Streets that are called something other than a street, avenue, or road. For
example, we shall miss “Boulevard,” “Place,” “Way,” and their abbrevi-
ations.

2. Street names that are numbers, or partially numbers, like “42nd Street.”
3. Post-Office boxes and rural-delivery routes.

4. Street names that don’t end in anything like “Street.” An example is El
Camino Real in Silicon Valley. Being Spanish for “the royal road,” saying
“El Camino Real Road” would be redundant, so one has to deal with
complete addresses like “2000 El Camino Real.”

5. All sorts of strange things we can’t even imagine. Can you?

Thus, having a regular-expression compiler can make the process of slow con-
vergence to the complete recognizer for addresses much easier than if we had
to recode every change directly in a conventional programming language.

3.3.4 Exercises for Section 3.3

Exercise 3.3.1: Give a regular expression to describe phone numbers in all
the various forms you can think of. Consider international numbers as well as
the fact that different countries have different numbers of digits in area codes
and in local phone numbers.

Exercise 3.3.2: Give a regular expression to represent salaries as they might
appear in employment advertising. Consider that salaries might be given on
a per hour, week, month, or year basis. They may or may not appear with a
dollar sign, or other unit such as “K” following. There may be a word or words
nearby that identify a salary. Suggestion: look at classified ads in a newspaper,
or on-line jobs listings to get an idea of what patterns might be useful.

Exercise 3.3.3: At the end of Section 3.3.3 we gave some examples of improve-
ments that could be possible for the regular expression that describes addresses.
Modify the expression developed there to include all the mentioned options.
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3.4 Algebraic Laws for Regular Expressions

In Example 3.5, we saw the need for simplifying regular expressions, in order to
keep the size of expressions manageable. There, we gave some ad-hoc arguments
why one expression could be replaced by another. In all cases, the basic issue
was that the two expressions were equivalent, in the sense that they defined
the same languages. In this section, we shall offer a collection of algebraic
laws that bring to a higher level the issue of when two regular expressions are
equivalent. Instead of examining specific regular expressions, we shall consider
pairs of regular expressions with variables as arguments. Two expressions with
variables are equivalent if whatever languages we substitute for the variables,
the results of the two expressions are the same language.

An example of this process in the algebra of arithmetic is as follows. It is
one matter to say that 1+2 = 2+ 1. That is an example of the commutative law
of addition, and it is easy to check by applying the addition operator on both
sides and getting 3 = 3. However, the commutative law of addition says more;
it says that © +y = y + x, where z and y are variables that can be replaced
by any two numbers. That is, no matter what two numbers we add, we get the
same result regardless of the order in which we sum them.

Like arithmetic expressions, the regular expressions have a number of laws
that work for them. Many of these are similar to the laws for arithmetic, if we
think of union as addition and concatenation as multiplication. However, there
are a few places where the analogy breaks down, and there are also some laws
that apply to regular expressions but have no analog for arithmetic, especially
when the closure operator is involved. The next sections form a catalog of the
major laws. We conclude with a discussion of how one can check whether a
proposed law for regular expressions is indeed a law; i.e., it will hold for any
languages that we may substitute for the variables.

3.4.1 Associativity and Commutativity

Commutativity is the property of an operator that says we can switch the order
of its operands and get the same result. An example for arithmetic was given
above: ¢ +y = y + x. Associativity is the property of an operator that allows
us to regroup the operands when the operator is applied twice. For example,
the associative law of multiplication is (z X y) X z = X (y x z). Here are three
laws of these types that hold for regular expressions:

e L+ M = M + L. This law, the commutative law for union, says that we
may take the union of two languages in either order.

e (L+ M)+ N =L+ (M+ N). This law, the associative law for union,
says that we may take the union of three languages either by taking the
union of the first two initially, or taking the union of the last two initially.
Note that, together with the commutative law for union, we conclude
that we can take the union of any collection of languages with any order
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and grouping, and the result will be the same. Intuitively, a string is in
Ly ULy U---U Ly if and only if it is in one or more of the L;’s.

e (LM)N = L(MN). This law, the associative law for concatenation, says
that we can concatenate three languages by concatenating either the first
two or the last two initially.

Missing from this list is the “law” LM = M L, which would say that con-
catenation is commutative. However, this law is false.

Example 3.10: Consider the regular expressions 01 and 10. These expres-
sions denote the languages {01} and {10}, respectively. Since the languages are
different the general law LM = ML cannot hold. If it did, we could substitute
the regular expression 0 for L and 1 for M and conclude falsely that 01 = 10.
O

3.4.2 Identities and Annihilators

An identity for an operator is a value such that when the operator is applied to
the identity and some other value, the result is the other value. For instance,
0 is the identity for addition, since 0 + z = = + 0 = z, and 1 is the identity
for multiplication, since 1 X * = ¢ X 1 = z. An annihilator for an operator
is a value such that when the operator is applied to the annihilator and some
other value, the result is the annihilator. For instance, 0 is an annihilator for
multiplication, since 0 X x = ¢ x 0 = 0. There is no annihilator for addition.

There are three laws for regular expressions involving these concepts; we list
them below.

e )+ L =L+ (= L. This law asserts that () is the identity for union.
e ¢L = Le = L. This law asserts that € is the identity for concatenation.
e )L = LP = (). This law asserts that () is the annihilator for concatenation.

These laws are powerful tools in simplifications. For example, if we have a
union of several expressions, some of which are, or have been simplified to 0,
then the ()’s can be dropped from the union. Likewise, if we have a concatenation
of several expressions, some of which are, or have been simplified to €, we can
drop the €’s from the concatenation. Finally, if we have a concatenation of any
number of expressions, and even one of them is (), then the entire concatenation
can be replaced by 0.

3.4.3 Distributive Laws

A distributive law involves two operators, and asserts that one operator can be
pushed down to be applied to each argument of the other operator individually.
The most common example from arithmetic is the distributive law of multipli-
cation over addition, that is, ¢ X (y+2) = & X y +x X z. Since multiplication is
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commutative, it doesn’t matter whether the multiplication is on the left or right
of the sum. However, there is an analogous law for regular expressions, that we
must state in two forms, since concatenation is not commutative. These laws
are:

e L(M + N)= LM + LN. This law, is the left distributive law of concate-
nation over union.

e (M +N)L =ML+ NL. This law, is the right distributive law of con-
catenation over union.

Let us prove the left distributive law; the other is proved similarly. The
proof will refer to languages only; it does not depend on the languages having
regular expressions.

Theorem 3.11: If L, M, and N are any languages, then
L(MUN)=LMULN

PROOF: The proof is similar to another proof about a distributive law that we
saw in Theorem 1.10. We need first to show that a string w is in L(M U N) if
and only if it isin LM U LN.

(Only-if) If w is in L(M U N), then w = xy, where  is in L and y is in either
M or N. If yisin M, then zy is in LM, and therefore in LM U LN. Likewise,
if y is in N, then zy is in LN and therefore in LM U LN.

(If) Suppose w is in LM U LN. Then w is in either LM or in LN. Suppose
first that w is in LM . Then w = xy, where x isin L and y isin M. As y is in
M, it is alsoin M U N. Thus, zy is in L(M U N). If w is not in LM, then it
is surely in LN, and a similar argument shows it is in L(M U N). O

Example 3.12: Consider the regular expression 0+01*. We can “factor out a
0” from the union, but first we have to recognize that the expression 0 by itself
is actually the concatenation of 0 with something, namely €. That is, we use
the identity law for concatenation to replace 0 by Oe¢, giving us the expression
Oc+ 01*. Now, we can apply the left distributive law to replace this expression
by 0(e + 1*). If we further recognize that € is in L(1*), then we observe that
€+ 1* = 1%, and can simplify to 01*. O

3.4.4 The Idempotent Law

An operator is said to be idempotent if the result of applying it to two of the
same values as arguments is that value. The common arithmetic operators are
not idempotent;  + = #  in general and x X = # z in general (although there
are some values of x for which the equality holds, such as 0 + 0 = 0). However,
union and intersection are common examples of idempotent operators. Thus,
for regular expressions, we may assert the following law:
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e L+ L = L. This law, the idempotence law for union, states that if we
take the union of two identical expressions, we can replace them by one
copy of the expression.

3.4.5 Laws Involving Closures

There are a number of laws involving the closure operators and its UNIX-style
variants T and 7. We shall list them here, and give some explanation for why
they are true.

e (L*)* = L*. This law says that closing an expression that is already
closed does not change the language. The language of (L*)* is all strings
created by concatenating strings in the language of L*. But those strings
are themselves composed of strings from L. Thus, the string in (L*)* is
also a concatenation of strings from L and is therefore in the language of
L*.

e ()* = e. The closure of {) contains only the string €, as we discussed in
Example 3.6.

*

e ¢* = ¢. It is easy to check that the only string that can be formed by
concatenating any number of copies of the empty string is the empty
string itself.

o Lt =LL* = L*L. Recall that LT is defined to be L + LL + LLL + -- - .
Also, L* =e+ L+ LL+ LLL + --- . Thus,

LL*=Le+ LL+ LLL+ LLLL+ ---

When we remember that Le = L, we see that the infinite expansions for
LL* and for Lt are the same. That proves LT = LL*. The proof that
LT = L*L is similar.*

e L* = LT +¢. The proof is easy, since the expansion of LT includes every
term in the expansion of L* except €. Note that if the language L contains
the string €, then the additional “+¢” term is not needed; that is, LT = L*
in this special case.

e L7 = ¢+ L. This rule is really the definition of the ? operator.

3.4.6 Discovering Laws for Regular Expressions

Each of the laws above was proved, formally or informally. However, there is
an infinite variety of laws about regular expressions that might be proposed.
Is there a general methodology that will make our proofs of the correct laws

4Notice that, as a consequence, any language L commutes (under concatenation) with its
own closure; LL* = L*L. That rule does not contradict the fact that, in general, concatena-
tion is not commutative.
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easy? It turns out that the truth of a law reduces to a question of the equality
of two specific languages. Interestingly, the technique is closely tied to the
regular-expression operators, and cannot be extended to expressions involving
some other operators, such as intersection.

To see how this test works, let us consider a proposed law, such as

(L + M)* = (L*M*)*

This law says that if we have any two languages L and M, and we close their
union, we get the same language as if we take the language L*M™, that is,
all strings composed of zero or more choices from L followed by zero or more
choices from M, and close that language.

To prove this law, suppose first that string w is in the language of (L+M)*.5
Then we can write w = wyws - - - wy, for some k, where each w; is in either L or
M. Tt follows that each w; is in the language of L*M*. To see why, if w; is in
L, pick one string, w;, from L; this string is also in L*. Pick no strings from
M; that is, pick € from M*. If w; is in M, the argument is similar. Once every
w; is seen to be in L*M™*, it follows that w is in the closure of this language.

To complete the proof, we also have to prove the converse: that strings
in (L*M™)* are also in (L + M)*. We omit this part of the proof, since our
objective is not to prove the law, but to notice the following important property
of regular expressions.

Any regular expression with variables can be thought of as a concrete regular
expression, one that has no variables, by thinking of each variable as if it were a
distinct symbol. For example, the expression (L+ M)* can have variables L and
M replaced by symbols a and b, respectively, giving us the regular expression
(a+b)*.

The language of the concrete expression guides us regarding the form of
strings in any language that is formed from the original expression when we
replace the variables by languages. Thus, in our analysis of (L + M)*, we
observed that any string w composed of a sequence of choices from either L or
M, would be in the language of (L + M)*. We can arrive at that conclusion
by looking at the language of the concrete expression, L((a + b)*), which is
evidently the set of all strings of a’s and b’s. We could substitute any string in
L for any occurrence of a in one of those strings, and we could substitute any
string in M for any occurrence of b, with possibly different choices of strings for
different occurrences of a or b. Those substitutions, applied to all the strings
in (a+ b)*, gives us all strings formed by concatenating strings from L and/or
M, in any order.

The above statement may seem obvious, but as is pointed out in the box
on “Extensions of the Test Beyond Regular Expressions May Fail,” it is not
even true when some other operators are added to the three regular-expression
operators. We prove the general principle for regular expressions in the next
theorem.

5For simplicity, we shall identify the regular expressions and their languages, and avoid
saying “the language of” in front of every regular expression.
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Theorem 3.13: Let E be a regular expression with variables Ly, Lo, ..., L,,.
Form concrete regular expression C' by replacing each occurrence of L; by the
symbol a;, for ¢ = 1,2,...,m. Then for any languages L1, Lo, ..., Ly, every

string w in L(E) can be written w = wyws - - - wg, where each w; is in one of
the languages, say Lj;, and the string aj, aj, - --aj, is in the language L(C).
Less formally, we can construct L(E) by starting with each string in L(C),
say aj, aj, ---aj,, and substituting for each of the a;,’s any string from the
corresponding language L;;.

PROOF: The proof is a structural induction on the expression E.

BASIS: The basis cases are where E is ¢, (), or a variable L. In the first two
cases, there is nothing to prove, since the concrete expression C' is the same as
E. If E is a variable L, then L(E) = L. The concrete expression C' is just a,
where a is the symbol corresponding to L. Thus, L(C) = {a}. If we substitute
any string in L for the symbol a in this one string, we get the language L, which
is also L(E).

INDUCTION: There are three cases, depending on the final operator of E.
First, suppose that £ = F' + @; i.e., a union is the final operator. Let C and D
be the concrete expressions formed from F' and G, respectively, by substituting
concrete symbols for the language-variables in these expressions. Note that the
same symbol must be substituted for all occurrences of the same variable, in
both F and G. Then the concrete expression that we get from E is C'+ D, and
L(C+ D)= L(C)+ L(D).

Suppose that w is a string in L(E), when the language variables of E are
replaced by specific languages. Then w is in either L(F) or L(G). By the
inductive hypothesis, w is obtained by starting with a concrete string in L(C) or
L(D), respectively, and substituting for the symbols strings in the corresponding
languages. Thus, in either case, the string w can be constructed by starting
with a concrete string in L(C'+ D), and making the same substitutions of strings
for symbols.

We must also consider the cases where E is F'G or F*. However, the ar-
guments are similar to the union case above, and we leave them for you to
complete. O

3.4.7 The Test for a Regular-Expression Algebraic Law

Now, we can state and prove the test for whether or not a law of regular
expressions is true. The test for whether £ = F' is true, where E and F' are
two regular expressions with the same set of variables, is:

1. Convert E and F to concrete regular expressions C' and D, respectively,
by replacing each variable by a concrete symbol.

2. Test whether L(C) = L(D). If so, then E = F is a true law, and if not,
then the “law” is false. Note that we shall not see the test for whether two



3.4. ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 121

regular expressions denote the same language until Section 4.4. However,
we can use ad-hoc means to decide the equality of the pairs of languages
that we actually care about. Recall that if the languages are not the same,
then it is sufficient to provide one counterexample: a single string that is
in one language but not the other.

Theorem 3.14: The above test correctly identifies the true laws for regular
expressions.

PROOF: We shall show that L(E) = L(F') for any languages in place of the
variables of E and F if and only if L(C) = L(D).

(Only-if) Suppose L(E) = L(F') for all choices of languages for the variables.
In particular, choose for every variable L the concrete symbol a that replaces L
in expressions C and D. Then for this choice, L(C) = L(E), and L(D) = L(F).
Since L(E) = L(F) is given, it follows that L(C) = L(D).

(If) Suppose L(C) = L(D). By Theorem 3.13, L(E) and L(F') are each
constructed by replacing the concrete symbols of strings in L(C) and L(D),
respectively, by strings in the languages that correspond to those symbols. If
the strings of L(C') and L(D) are the same, then the two languages constructed
in this manner will also be the same; that is, L(E) = L(F). O

Example 3.15: Consider the prospective law (L + M)* = (L*M*)*. If we
replace variables L and M by concrete symbols a and b respectively, we get the
regular expressions (a + b)* and (a*b*)*. It is easy to check that both these
expressions denote the language with all strings of a’s and 0’s. Thus, the two
concrete expressions denote the same language, and the law holds.

For another example of a law, consider L* = L*L*. The concrete languages
are a* and a*a*, respectively, and each of these is the set of all strings of a’s.
Again, the law is found to hold; that is, concatenation of a closed language with
itself yields that language.

Finally, consider the prospective law L + ML = (L + M)L. If we choose
symbols a and b for variables L and M, respectively, we have the two concrete
regular expressions a + ba and (a + b)a. However, the languages of these
expressions are not the same. For example, the string aa is in the second, but
not the first. Thus, the prospective law is false. O

3.4.8 Exercises for Section 3.4

Exercise 3.4.1: Verify the following identities involving regular expressions.
*a) R+S=S+R.

b) (R+S)+T =R+ (S+T).

c) (RS)T = R(ST).
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Extensions of the Test Beyond Regular Expressions
May Fail

Let us consider an extended regular-expression algebra that includes
the intersection operator. Interestingly, adding N to the three regular-
expression operators does not increase the set of languages we can de-
scribe, as we shall see in Theorem 4.8. However, it does make the test for
algebraic laws invalid.

Consider the “law” L N M N N = L N M; that is, the intersection of
any three languages is the same as the intersection of the first two of these
languages. This “law” is patently false. For example, let L = M = {a}
and N = (). But the test based on concretizing the variables would fail to
see the difference. That is, if we replaced L, M, and N by the symbols a,
b, and ¢, respectively, we would test whether {a} N {b} N {c} = {a} N {b}.
Since both sides are the empty set, the equality of languages holds and
the test would imply that the “law” is true.

d) R(S+T)=RS +RT.

e) (R+S)T = RT + ST.

R*)* =
g) (e+R)* = R*.

)
)

)
h)

(
(
(
(R*S*)* = (R+S)".

! Exercise 3.4.2: Prove or disprove each of the following statements about
regular expressions.

*

a) (R+S)* = R*+ S*.
b) (RS + R)*R = R(SR + R)".

* ¢) (RS + R)*RS = (RR*S)*.
d) (R+S)*S = (R*S)".
e) S(RS+ S)*R = RR*S(RR*S)".

Exercise 3.4.3: In Example 3.6, we developed the regular expression
(0+1)*1(0+1)+(0+1)"1(0+1)(0+1)

Use the distributive laws to develop two different, simpler, equivalent expres-
sions.
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Exercise 3.4.4: At the beginning of Section 3.4.6, we gave part of a proof that
(L*M*)* = (L + M)*. Complete the proof by showing that strings in (L*M*)*
are also in (L + M)*.

! Exercise 3.4.5: Complete the proof of Theorem 3.13 by handling the cases
where regular expression F is of the form FG or of the form F*.

3.5

<+

3.6

Summary of Chapter 3

Regular Expressions: This algebraic notation describes exactly the same
languages as finite automata: the regular languages. The regular-ex-
pression operators are union, concatenation (or “dot”), and closure (or
“star”).

Regular Expressions in Practice: Systems such as UNIX and various of
its commands use an extended regular-expression language that provides
shorthands for many common expressions. Character classes allow the
easy expression of sets of symbols, while operators such as one-or-more-of
and at-most-one-of augment the usual regular-expression operators.

Equivalence of Regular FExpressions and Finite Automata: We can con-
vert a DFA to a regular expression by an inductive construction in which
expressions for the labels of paths allowed to pass through increasingly
larger sets of states are constructed. Alternatively, we can use a state-
elimination procedure to build the regular expression for a DFA. In the
other direction, we can construct recursively an e-NFA from regular ex-
pressions, and then convert the e-NFA to a DFA, if we wish.

The Algebra of Regular Expressions: Regular expressions obey many of
the algebraic laws of arithmetic, although there are differences. Union
and concatenation are associative, but only union is commutative. Con-
catenation distributes over union. Union is idempotent.

Testing Algebraic Identities: We can tell whether a regular-expression
equivalence involving variables as arguments is true by replacing the vari-
ables by distinct constants and testing whether the resulting languages
are the same.

Gradiance Problems for Chapter 3

The following is a sample of problems that are available on-line through the
Gradiance system at www.gradiance.com/pearson. Each of these problems
is worked like conventional homework. The Gradiance system gives you four
choices that sample your knowledge of the solution. If you make the wrong
choice, you are given a hint or advice and encouraged to try the same problem
again.
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Problem 3.1: Here is a finite automaton [shown on-line by the Gradiance
system]. Which of the following regular expressions defines the same language
as the finite automaton? Hint: each of the correct choices uses component
expressions. Some of these components are:

1. The ways to get from A to D without going through D.
2. The ways to get from D to itself, without going through D.
3. The ways to get from A to itself, without going through A.

It helps to write down these expressions first, and then look for an expression
that defines all the paths from A to D.

Problem 3.2: When we convert an automaton to a regular expression, we
need to build expressions for the labels along paths from one state to another
state that do not go through certain other states. Below is a nondeterministic
finite automaton with three states [shown on-line by the Gradiance system].
For each of the six orders of the three states, find regular expressions that give
the set of labels along all paths from the first state to the second state that
never go through the third state. Then identify one of these expressions from
the list of choices below.

Problem 3.3: Identify from the list below the regular expression that gener-
ates all and only the strings over alphabet {0,1} that end in 1.

Problem 3.4: Apply the construction in Fig. 3.16 and Fig. 3.17 to convert
the regular expression (0+1)*(0+¢) to an epsilon-NFA. Then, identify the true
statement about your epsilon-NFA from the list below.

Problem 3.5: Consider the following identities for regular expressions; some
are false and some are true. You are asked to decide which and in case it is
false to provide the correct counterexample.

a) R(S+T)=RS+RT
b) (B*)" = R*

¢) (R*S*)* = (R+ 8)*
d) (R+8)* = R* + S*
e) S(RS + S)*R = RR*S(RR*S)*
f) (RS + R)*R = R(SR + R)*

Problem 3.6: In this question you are asked to consider the truth or falsehood
of six equivalences for regular expressions. If the equivalence is true, you must
also identify the law from which it follows. In each case the statement R = S is
conventional shorthand for “L(R) = L(S).” The six proposed equivalences are:
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1. 0*1* = 1*0*
2. 010 =0
. e01 =01

= W

. (0% +1%)0 = 00 + 1*0
. (0°1)0* = 0*(10%)

ot

6. 01+01=01
Identify the correct statement from the list below.

Problem 3.7: Which of the following strings is not in the Kleene closure of
the language {011, 10,110}7

Problem 3.8: Here are seven regular expressions [shown on-line by the Gra-
diance system]. Determine the language of each of these expressions. Then,
find in the list below a pair of equivalent expressions.

Problem 3.9: Converting a DFA such as the following [shown on-line by
the Gradiance system]. to a regular expression requires us to develop regular
expressions for limited sets of paths — those that take the automaton from one
particular state to another particular state, without passing through some set
of states. For the automaton above, determine the languages for the following
limitations:

1. L4 = the set of path labels that go from A to A without passing through
CorD.

2. Lyp = the set of path labels that go from A to B without passing through
CorD.

3. Lpa = the set of path labels that go from B to A without passing through
C or D.

4. Lpp = the set of path labels that go from B to B without passing through
CorD.

Then, identify a correct regular expression from the list below.

3.7 References for Chapter 3

The idea of regular expressions and the proof of their equivalence to finite
automata is the work of S. C. Kleene [3]. However, the construction of an e-
NFA from a regular expression, as presented here, is the “McNaughton-Yamada
construction,” from [4]. The test for regular-expression identities by treating
variables as constants was written down by J. Gischer [2]. Although thought to
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be folklore, this report demonstrated how adding several other operations such
as intersection or shuffle (See Exercise 7.3.4) makes the test fail, even though
they do not extend the class of languages representable.

Even before developing UNIX, K. Thompson was investigating the use of
regular expressions in commands such as grep, and his algorithm for processing
such commands appears in [5]. The early development of UNIX produced sev-
eral other commands that make heavy use of the extended regular-expression
notation, such as M. Lesk’s 1ex command. A description of this command and
other regular-expression techniques can be found in [1].

1. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, Reading MA, 1986.

2. J. L. Gischer, STAN-CS-TR-84-1033 (1984).

3. S. C. Kleene, “Representation of events in nerve nets and finite automata,”
In C. E. Shannon and J. McCarthy, Automata Studies, Princeton Univ.
Press, 1956, pp. 3-42.

4. R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,” IEEE Trans. Electronic Computers 9:1 (Jan., 1960), pp.
39-47.

5. K. Thompson, “Regular expression search algorithm,” Comm. ACM 11:6
(June, 1968), pp. 419-422.



	3.
Regular Expressions and Languages

