
Formal languages I: regular languages

LING83800

1 Introduction
A formal language is a specification of a (usually infinite) set of strings, defined by formal rules.
Formal languages are abstract mathematical objects, but certain types of formal languages map
onto various domains of human language. These types of formal languages are relevant both to
the cognitive science of language—they allow us to formalize what it means to learn or parse a
language—and are used to build speech and language technologies.

In this handout, we’ll define several key notions in formal language theory: sets and oper-
ations over sets (section 2), strings and operations over strings (section 3), and languages and
operations over languages (section 4). We’ll then introduce a family of formal languages known
as the regular languages (section 5) and their relation to regular expressions (section 6).

In later weeks, we will introduce computational devices known as finite automata, which
“express” or implement subsets of the regular languages, and then show how these can also be
used to express grammatical rules.

Bibliographic note
Some of the examples and notation here are adapted fromPartee et al. 1993:§1, Gorman and Sproat
2021:§1, and Hopcroft et al. 2008:§1.5. The notation here also roughly conforms to the notation in
Prof. Al Khatib’s semantics lectures. Jurafsky and Martin (2008):§2–2.1 review regular expression
syntax in some detail.

2 Sets

2.1 Definition
A set is an abstract, unordered collection of distinct objects, the members or elements of that set.

• They are an abstract, purely logical notion, and their definition does not presuppose any
particular method of representing them in hardware or software.

• They are unordered in the sense that there need not be any natural ordering among the
elements or members of any set.

Members of a set can be of any type, including other sets. Sets may either be finite (e.g., the set
consisting of students in this class) or infinite (e.g., the set of grammatical sentences of English).

Set membership is indicated with the P symbol (\in in LATEX). The expression x P X is read
as “x is a member ofX”. We can also deny this relation using R (\notin in LATEX); the expression
x R X is read as “x is not a member of X”.

Problem How is a set as defined here like a Python set? How is it different?

Solution Likeset, sets are unordered and do not contain repeated elements. However, Python
set objects may not be infinite and may not contain other set objects. Furthermore, objects
stored in a Python set must be immutable and hashable.

2.2 Specification
By convention, we use capital Italic letters (X,Y, Z) to denote sets and lowercase Italic letters
x, y, z to denote members of sets.

There are several ways to specify a set. For finite sets, we can simply list themembers enclosed
in curly braces. This is known as extension notation or list notation.

t2, 3, 5, 7u

Note that it is an accidental feature that the members of a set are listed in a particular order; there
is no intrinsic ordering of the members of a set. Thus all the following are equivalent:

t2, 3, 5, 7u, t7, 5, 3, 2u, t3, 2, 7, 5u, t2, 5, 3, 7u, . . .

Another method to specify a set—including infinite sets—is to refer to properties that uniquely
identify the set’s members. This is known as set-builder notation or predicate notation.

tx | x is primeu

2.3 Subsets
The set X is said to be a subset of another set Y just in the case that every member of X is also a
member of Y . We indicate this using Ď (\subseteq in LATEX). The expression X Ď Y is read
as “X is a subset of Y ”. We can also deny this relation using Ę (\nsubseteq in LATEX); the
expression X Ę Y is read as “X is not a subset of Y ”. There is also a special set known as the
empty set, written as H (\emptyset in LATEX). For every set S, H Ď S.

Problem Let:

K “ tMars, Saturn,Uranusu
L “ tx | x is a planet in our solar systemu

Is K a subset of L? And, is L a subset of K?

Solution K Ď L; L Ę K (for instance, Venus P L, R K).

2.4 Operations
2.4.1 Union

The union of two sets X Y Y (\cup in LATEX) is the set that contains just the elements which are
members ofX , of Y , or bothX and Y . Thus it corresponds to disjunction operator _ in logic, and
(loosely) to the conjunction or in English.

X Y Y “ tx | x P X _ x P Y u

Problem Let:

K “ ta, bu

L “ tc, du

M “ tb, du

K Y L “

K Y M “

L Y M “

K Y K “

Solution

K Y L “ ta, b, c, du

K Y M “ ta, b, du

L Y M “ tb, c, du

K Y K “ ta, bu “ K

2.4.2 Intersection

The intersection of two setsXXY (\cap in LATEX) is the set that contains just the elements which
are members of both X and Y . Thus it corresponds to the conjunction operator ^ in logic, and to
the conjunction and in English.

X X Y “ tx | x P X ^ x P Y u

Problem Let:

K “ ta, bu

L “ tc, du

M “ tb, du

K X L “

K X M “

L X M “

K X K “

Solution

K X L “ H

K X M “ tbu

L X M “ tdu

K X K “ ta, bu “ K

2.4.3 Difference

The difference of two sets X ´ Y is the set that contains just the elements which are members of
X but not members of Y . (Recall that ^ is the logical conjunction operator.)

X ´ Y “ tx | x P X ^ x R Y u

Problem Let:

K “ ta, bu

L “ tc, du

M “ tb, du

K ´ M “

M ´ L “

K ´ H “

K ´ K “

Solution

K ´ M “ tau

M ´ L “ tbu

K ´ H “ ta, bu “ K

K ´ K “ H

2.5 Closure properties
A set is said to be closed with respect to (or to have closure over) a binary mathematical operator
‚ if for all sets X,Y , the expression denoted byX ‚ Y is itself a set.1 Sets are closed with respect
to union, intersection, and difference, among other operators.

3 Strings

3.1 Definition
Let Σ be the alphabet, a (non-empty) finite set of symbols. We make no assumption about the
nature of these symbols; they may be numbers, characters, words, etc. A string (or word) is any
finite ordered sequence of zero or more symbols where each symbol is an member of Σ. The
length of a string s, the number of symbols in that string, is denoted |s|. By convention, the
empty string, a string of length 0, is denoted by ϵ (\epsilon in LATEX).

Problem How is a string as defined here like a Python str? How is it different?

Solution Like str, strings are finite and ordered. However, Python str objects may only
contain Unicode codepoints whereas strings may contain arbitrary symbols.

Problem Let Σ “ t0, 1u. Now, list all strings of length 3.

Solution t000,001,010,100,011,101,110,111u.

3.2 Specification
There is no single convention for specifying strings. In some cases, we use comma-separated
values wrapped in angular brackets (\langle and \rangle in LATEX) to specify strings, as
in xx,yy. When the alphabet is a subset of printable characters, we may write strings using
typewriter text (\texttt in LATEX) as in xy.

3.3 Operations
3.3.1 Concatenation

The concatenation of two strings s and t, written st, is the string defined by the sequence of
symbols in s followed by the sequence of symbols in t. Strings are closed with respect to concate-
nation.

Problem Let s “ aab and t “ cdf. What is st? What is ts?
1 Similarly, a set is said to be closed with respect to a unary (prefix) mathematical operator ‚ if for all sets X , the

expression denoted by ‚X is itself a set.

Solution

st “ aabcdf
ts “ cdfaab

3.3.2 Reversal

The reversal of a string s, written sR, is the string defined by the sequence of symbols in s in
reverse order. Strings are closed with respect to reversal.

Problem Let s “ aab and t “ cdf. What is sRt? What is pstqR?

Solution

sRt “ baacdf

pstqR “ fdcbaa

4 Languages

4.1 Definition
A set of strings is traditionally known as a language. This is not intended to supplant common-
sense—or linguistic—notions of what a human language is, it’s just a term of art.

4.2 Specification
Languages are specified in the same fashion as ordinary sets: using either type of the curly-brace
notation introduced in subsection 2.2.

4.3 Operations
As languages are sets, union, intersection, and difference (subsection 2.4) are all well-defined and
languages are closed with respect to these operations.

4.3.1 Concatenation

We can generalize concatenation from strings to languages. If X and Y are languages, then XY
contains the concatenation of each string x P X with each string y P Y .

XY “ txy | x P X ^ y P Y u

ThenotationXn, wheren is a natural number, denotes a language consisting ofn “self-concatenations”
of X ; e.g., X0 “ tϵu and X4 “ XXXX .

Problem Let S “ ta,bc,du and T “ tef,gu. Now list the elements of ST , TT , and T 3.

Solution

ST “ taef,ag,bcef,bcg,def,dgu

TT “ tefef,efg,gef,ggu

T 3 “ tefefef,efefg,efgef,efgg,gefef,gefg,ggef,gggu

4.4 Closure
The (concatenative) closure of a language X is the infinite union of zero or more concatenations
ofX with itself. It is denoted by a superscripted asterisk; e.g.,X˚ “

Ť

iě0X
i “ tϵuYX YXX Y

XXX Y One variant of closure, indicated with a superscripted plus-sign, excludes the empty
string; e.g., X` “

Ť

ią0X
i “ X Y XX Y XXX Y . . ., or equivalently, X` “ XX˚. These two

variants of closure are colloquially referred to as Kleene star and Kleene plus, respectively. Finally,
a superscripted question mark indicates optionality; e.g., X? “ tϵu Y X .

5 Regular languages
We are now in a position to define a class of formal languages known as the regular languages
first characterized by Kleene (1956). Since languages are sets (of strings) we will denote them
using capital Italic letters. The regular languages are a set of languages such that:

• The empty language H is a regular language.

• The empty string language tϵu is a regular language.

• For every symbol s P Σ, the singleton language tsu is a regular language.

• If X is a regular language then the closure X˚ is a regular language.

• If X and Y are regular languages then:

– their union X Y Y is a regular language and
– their concatenation XY is a regular language.

• Languages not so derived are not regular languages.

6 Regular expressions
The regular expressions are a terse representation of regular languages which use closure, union,
and concatenation.2 As Jurafsky and Martin (2008:17f.) write, regular expressions are among

2 While regular languages are closed with respect to intersection and difference as well, neither are supported by
regular expressions.

the “unsung successes in standardization in computer science”. Regular expression matching is
supported by Python’s re module, command-line tools like grep and sed, and nearly all of
these use roughly the same terse algebraic notation. Following the convention introduced by the
Perl programming language, we write regular expressions in typewriter text and surrounded by
forward slashes.

6.1 Correspondences
• Concatenation is implicit in regular expressions.

/ab/ “ tabu

• Kleene star corresponds to the quantifier *.

/a*(bb)*/ “ tau˚tbbu˚

• Kleene plus corresponds to the quantifier +.

/yes+/ “ tyeutsu`

“ tyes,yess,yesss, . . .u

• The “Kleene question mark” corresponds to the quantifier ?.

/colou?r/ “ tcoloutuu?tru

“ tcolor,colouru

• Union Y corresponds to several notations:

– Square brackets indicate the union of single characters.

/[Dd]addy/ “ ptDu Y tduqtaddyu

“ tDaddy,daddyu

– Square brackets can also be used to indicate a union of a range of single characters.

/Rocky_[1-3]/ “ tRocky_upt1u Y t2u Y t3uq

“ tRocky_1,Rocky_2,Rocky_3u

– The | operator indicates unions of arbitrary-length character sequences.

/gupp(y|ies)/ “ tguppuptyu Y tiesuq

“ tguppy,guppiesu

Problem List all the strings the following regular expression matches:

/(Hellrais|Highland|Loop|Sleep|Zooland)er/

Solution

tHellraiser,Highlander,Looper,Sleeper,Zoolanderu

Problem List some strings matched by the following regular expressions:

/[a-z]*burger/
/(in)?(de)?fatigable/

Solution

/[a-z]*burger/ “ tburger,cheeseburger,veggieburger, . . .u
/(in)?(de)?fatigable/ “ tfatigable,infatigable,indefatigable, . . .u

6.2 Extensions
It should be noted that many regular expression engines (including Python’s re) have additional
“extended” features that allow them to exceed the capacity of the regular languages.

References
Gorman, Kyle, and Richard Sproat. 2021. Finite-State Text Processing. Morgan & Claypool.
Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2008. Introduction to Automata Theory,

Languages, and Computation. Pearson.

Jurafsky, Daniel, and James Martin. 2008. Speech and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguistics, and Speech Recognition. Pearson Prentice
Hall, 2nd edition.

Kleene, Stephen C. 1956. Representation of events in nerve nets and finite automata. In Automata
Studies, ed. Claude E. Shannon and J. McCarthy, 3–42. Princeton University Press.

Partee, Barbara H., Alice ter Meulen, and Robert E. Wall. 1993. Mathematical Methods in Linguis-
tics. Kluwer Academic Publishers, 2nd edition.

	Introduction
	Sets
	Definition
	Specification
	Subsets
	Operations
	Union
	Intersection
	Difference

	Closure properties

	Strings
	Definition
	Specification
	Operations
	Concatenation
	Reversal

	Languages
	Definition
	Specification
	Operations
	Concatenation

	Closure

	Regular languages
	Regular expressions
	Correspondences
	Extensions

