Finite-state
transducers

LING83800

http://wellformedness.com/courses/LING83800/

Outline

® Rational relations

® Finite-state transducers
® Composition

® Rewrites

® Demo

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Rational relations

http://wellformedness.com/courses/LING83800/

Cross-product (redux) and rational relations

Recall that a cross-product (or Cartesian product) of two sets, X X Y, is the
set that contains all pairs (x, y) where x is an element of X and y is an
element of Y.

XXY={(x,y) | xeXAyeY}

Then, a rational relation is a subset of the cross-product of two regular
languages (e.g., y C A X B).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Example: state abbreviations

y = {(AK,Alaska),
(AL,Alabama,
(AR,Arkansas),
(AZ,Arizona),
(CA,California),
(CO,Colorado),
(CT,Connecticut),
(DE,Delaware),

!

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Interpretation

Regular languages are languages, or sets of strings. Rational relations, in
turn, can either be thought of as

® sets of pair of (input and output) strings, or

® mappings between input and output strings.
Thus, we might say either that

e (OH,0hio) €y, or

* y[{OH}] = {Ohio}.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Finite-state transducers

http://wellformedness.com/courses/LING83800/

Finite-state transducers

Finite-state transducers (FSTs) are generalizations of finite-state acceptors
which correspond to the rational relations. An FST is a 6-tuple defined by

a finite set of states Q,

a start or initial state s € Q,

a set of final or accepting states F C Q,

an input alphabet %,

an output alphabet ®, and

a transition relation 5§ C Q X (X U {e}) x (P U {e}) x Q.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Transduction

An FST is said to transduce or map fromx € (X U {e})* toy € (d U {e})*
so long as a complete path with input string x and output string y exists.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Paths

Given two states g, r € Q, input symbol x; € 2 U {€}, and output symbol
y;i € d U {e}, (g, x, i, r) € & implies that there is an arc from state g to
state r with input label x; and output label y;. A path through a finite
transducer is a triple consisting of

® astate sequence G;,G,,q;,.-- € Q" and a

® ainputstring x;, X5, X3, ... € (X U {e})",

® aoutputstringy,,y., Vs, ... € (P U{e})",

subject to the constraint that Vi € [1, n] : (Gi, Xi+1, Yi+1» Gi+1) € 6; that s,
there exists an arc from g; to gj4, labeled Xj1q : Vjt1.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Complete paths

A path is said to be complete if

® (s,X,¥1,G41) € 6 and
® g, €F.

That is, a complete path must also begin with an arc from the initial state
s to g, labeled x, : y, and terminate at a final state. Then, an FST
transduces input string x € (X U {€})" to output stringy € (b U {e})" if
there exists a complete path with input string x and output string y.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

FSAs as FSTs

FSAs can be thought of as a special case of FSTs where every transition
has the same input and output label. This is why, in Pynini and friends,
FSAs are instance of a class called Fst.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Even more about ¢

FSTs can map between strings of different lengths, but one must use €s to
“pad out” the shorter string. Thus, whereas every FSA has an equivalent
“e-free” FSA, not all e-FSTs have an equivalent “e-free” form. Thus, when
one applies the e-removal algorithm (e.g., Pynini’s rmepsilon
method) to FSTs, it simply removes € : € arcs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

State abbreviations (fragment)

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Rational operations over FSTs

Rational relations—and thus FSTs—are closed under closure,
concatenation, and union, and the Thompson (1968) constructions for
these operations are also appropriate to FSTs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Projection

Projection converts a FST to an FSA that is either equal to its domain
(input-projection) or range (output-projection). By convention,
input-projection is indicated by the prefix operator s; and output-project
by 7,. Projection can be computed simply by copying all input

(resp. output) labels onto the output (resp. input) labels along each arc.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Inversion

Inversion swaps the domain and range of an FST. By convention, it is
indicated by a superscripted —1. Inversion can be computed simply by
swapping input and output labels along each arc.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

({ac} x{b}) U ({df} x {e})

http://wellformedness.com/courses/LING83800/

mi ({ack x {b}) U ({df} x {e}))

http://wellformedness.com/courses/LING83800/

7o ({act x {b}) U ({df} x {e}))

http://wellformedness.com/courses/LING83800/

(({acy x {bhu ({df} x {e}))™

http://wellformedness.com/courses/LING83800/

Intersection

Recall from last week’s lecture that the regular languages—and thus
FSAs—are also closed under intersection, implemented with an algorithm
called composition. However, FSTs are not closed under intersection.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Composition

Composition is a generalization of intersection and relation chaining. Its
precise interpretation depends on whether the inputs are
languages/FSAs M, N or relations/FSTs u, v:

® Mo Nyields their intersection M N N.

® Movyields {(a,b) | a € M A b € v[a]};i.e, it restricts the domain
of v by intersecting it with M.

® i o Nyields {(a,b) | b € u[a] A b € N}; i.e., it restricts the range of
M by intersecting it with N.

® uovyields {(a,c) | b € u[a] A c € v[b]};i.e, it chains the output
of u to the input of v.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Briefly noted:
Associativity
Implementational details

http://wellformedness.com/courses/LING83800/

Rewrites

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Why rewrites?

® Grammarians, since at least Panini (fl. 4th c. BCE), have conceived of
grammars not as sets of permissible strings but rather as a series of
rules which “rewrite” abstract inputs to produce surface forms.

® One particularly influential rule notation is the one popularized by
Chomsky and Halle (1968), henceforth SPE.

® Johnson (1972) proves this notation, with some sensible restrictions,
is equivalent to the rational relations and thus to finite transducers.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Formalism

Let 2 be the set of symbols over which the rule will operate.

® For phonological rules, > might consist of all phonemes and their
allophones in a given language.

® For grapheme-to-phoneme rules, it would contain both graphemes
and phonemes.

Lets,t,[,r € X*. Then, the following is a possible rewrite rule.
s—ot/l_r

where s — tis the structural change and [and r as the environment. By
convention, [and/or r can be omitted when they are null (i.e., are €).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Interpretation

The above rule can be read as “s goes to t between [and r”, and specifies
a rational relation with domain and range X* such that all instances of [sr
are replaced with [tr, with all other strings in 2* passed through.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Example

Let < = {a, b, c} and consider the following rule.
b—sa/b_b

bbba — baba
abbbabbbc — ababababc

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Input: cbbca

http://wellformedness.com/courses/LING83800/

Output: cbbca

http://wellformedness.com/courses/LING83800/

Input: abbbba

http://wellformedness.com/courses/LING83800/

Output: ?2??

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Directionality

However, application is ambiguous with respect to certain input strings.

a. simultaneous application abaaba
b. left-to-right or right-linear application ababba
C. right-to-left or left-linear application ~ abbaba

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Directional application

In SPE it is assumed that that all rules apply simultaneously (op. cit.,
343f.). However, Johnson (1972) adduces a number of phonological
examples where directional application—either left-to-right or
right-to-left—is required. However, note that directionality has no
discernable effect on many rules and can often be ignored.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Boundary symbols

Let ~,$ ¢ X be boundary symbols disjoint from Z. Now let ~, the
beginning-of-string symbol, to optionally appear as the leftmost symbol
in [, and permit S, the end-of-string-symbol, to optionally appear as the
rightmost symbol in r. These boundary symbols are not permitted to
appear elsewhere in [or r, or anywhere within the structural description
and change.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Example

Let < = {a, b, c} and consider the following rule.
b—-a/~b_b

bbba — baba
abbbc — abbbc

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Generalization

We can generalize the elements of rules from single strings to languages
and relations. Then, a rewrite rule is specified by a five-tuple consisting of
® an alphabet %,
® astructural changet C X" X X%,
® aleft environment L C {~}73",
® aright environment R C 3*{$}’, and

® adirectionality (one of: “simultaneous”, “left-to-right”, or
“right-to-left”).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Briefly noted:
Features
Abbreviatory devices
Constraint-based formalisms

http://wellformedness.com/courses/LING83800/

Rule compilation

Rules which apply at the end or beginning of a string are generally trivial
to express as a finite transducer. For example, the following rules
prepend a prefix p or append a suffix s, respectively.

o — {pp/"_%*
2 — {s}/¥*_$

Such rules, respectively, correspond to the rational relations:

({e} x{p}) 2*
2" ({e} x {s})

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Challenges

Greater difficulties arise from the possibility of

® multiple sites for application and

® multiple overlapping contexts for application.

It thus proved challenging to develop a general-purpose algorithm for
compilation, and was not widely-known until the 1990s (e.g., Kaplan and
Kay, 1994; Karttunen, 1995). We review a generalization put forth by Mohri
and Sproat (1996), which builds a rewrite rule from a cascade of five
transducers, each a simple rational relation.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

The algorithm |

If X is a language, let X denote its complement, the language consisting of
all strings not in X. Then, let <4, <,, >¢ > be marker symbols disjoint
from the alphabet 2. L and R are acceptors defining the left and right
contexts, respectively. The constituent transducers are as follows:

® pinserts the > marker before all substrings matching R:
2R — X* > R.

® ¢ inserts markers <, and <, before all substrings matching m;(7) >:
ZU{>})'nri(t) = (ZU{>})"{<4, < }mi(T). Note that this
introduces two paths, one with <; and one with <,, which will
ultimately correspond, respectively, to the cases where L does/does
not occur to the left (see steps 4, 5 below).

® y applies the structural change T anywhere 7;(7), the input
projection of T, is preceded by <, and followed by >. It
simultaneously deletes the > marker everywhere.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

The algorithm Il

® A, admits only those strings in which L is followed by the <, marker
and deletes all <, markers satisfying this condition: Z*L <,— X*L.

®), admits only those strings in which all <, markers are not
preceded by L and deletes all <, markers satisfying this condition:
2L <,— XL

Then, the final context-dependent rewrite rule transducer is given by

T=pogoyolol

Slight variants are used for right-to-left and simultaneous transduction.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

Schematic of y

http://wellformedness.com/courses/LING83800/

Briefly noted:
Efficiency considerations

http://wellformedness.com/courses/LING83800/

Demo

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

References |

N. Chomsky and M. Halle. Sound Pattern of English. Harper & Row, 1968.
C. D. Johnson. Formal Aspects of Phonological Description. Mouton, 1972.

R. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331-378, 1994.

L. Karttunen. The replace operator. In 33rd Annual Meeting of the
Association for Computational Linguistics, pages 1623, 1995.

M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules.
In 34th Annual Meeting of the Association for Computational
Linguistics, pages 231-238, 1996.

K. Thompson. Programming techniques: regular expression search
algorithm. Communications of the ACM, 11(6):419-422, 1968.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

	References

