
Finite-state
transducers

LING83800

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Outline

• Rational relations
• Finite-state transducers
• Composition
• Rewrites
• Demo

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Rational relations

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Cross-product (redux) and rational relations

Recall that a cross-product (or Cartesian product) of two sets, X × Y, is the
set that contains all pairs (x, y) where x is an element of X and y is an
element of Y.

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y}

Then, a rational relation is a subset of the cross-product of two regular
languages (e.g., γ ⊆ A × B).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Example: state abbreviations

γ = {(AK,Alaska),
(AL,Alabama,
(AR,Arkansas),
(AZ,Arizona),
(CA,California),
(CO,Colorado),
(CT,Connecticut),
(DE,Delaware),
. . .}

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Interpretation

Regular languages are languages, or sets of strings. Rational relations, in
turn, can either be thought of as
• sets of pair of (input and output) strings, or
• mappings between input and output strings.

Thus, we might say either that
• (OH,Ohio) ∈ γ, or
• γ[{OH}] = {Ohio}.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Finite-state transducers

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Finite-state transducers

Finite-state transducers (FSTs) are generalizations of �nite-state acceptors
which correspond to the rational relations. An FST is a 6-tuple de�ned by

• a �nite set of states Q,
• a start or initial state s ∈ Q,
• a set of �nal or accepting states F ⊆ Q,
• an input alphabet Σ,
• an output alphabet Φ, and
• a transition relation δ ⊆ Q × (Σ ∪ {ε}) × (Φ ∪ {ε}) × Q.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Transduction

An FST is said to transduce ormap from x ∈ (Σ ∪ {ε})∗ to y ∈ (Φ ∪ {ε})∗

so long as a complete path with input string x and output string y exists.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Paths

Given two states q, r ∈ Q, input symbol xi ∈ Σ ∪ {ε}, and output symbol
yi ∈ Φ ∪ {ε}, (q, xi, yi, r) ∈ δ implies that there is an arc from state q to
state r with input label xi and output label yi. A path through a �nite
transducer is a triple consisting of

• a state sequence q1, q2, q3, . . . ∈ Qn and a
• a input string x1, x2, x3, . . . ∈ (Σ ∪ {ε})n,
• a output string y1, y2, y3, . . . ∈ (Φ ∪ {ε})n,

subject to the constraint that [i ∈ [1, n] : (qi, xi+1, yi+1, qi+1) ∈ δ ; that is,
there exists an arc from qi to qi+1 labeled xi+1 : yi+1.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Complete paths

A path is said to be complete if

• (s, x1, y1, q1) ∈ δ and
• qn ∈ F.

That is, a complete path must also begin with an arc from the initial state
s to q1 labeled x1 : y1 and terminate at a �nal state. Then, an FST
transduces input string x ∈ (Σ ∪ {ε})n to output string y ∈ (Φ ∪ {ε})n if
there exists a complete path with input string x and output string y.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


FSAs as FSTs

FSAs can be thought of as a special case of FSTs where every transition
has the same input and output label. This is why, in Pynini and friends,
FSAs are instance of a class called Fst.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Even more about ε

FSTs can map between strings of di�erent lengths, but one must use εs to
“pad out” the shorter string. Thus, whereas every FSA has an equivalent
“e-free” FSA, not all ε-FSTs have an equivalent “e-free” form. Thus, when
one applies the ε-removal algorithm (e.g., Pynini’s rmepsilon
method) to FSTs, it simply removes ε : ε arcs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


State abbreviations (fragment)

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Rational operations over FSTs

Rational relations—and thus FSTs—are closed under closure,
concatenation, and union, and the Thompson (1968) constructions for
these operations are also appropriate to FSTs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Projection

Projection converts a FST to an FSA that is either equal to its domain
(input-projection) or range (output-projection). By convention,
input-projection is indicated by the pre�x operator πi and output-project
by πo. Projection can be computed simply by copying all input
(resp. output) labels onto the output (resp. input) labels along each arc.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Inversion

Inversion swaps the domain and range of an FST. By convention, it is
indicated by a superscripted −1. Inversion can be computed simply by
swapping input and output labels along each arc.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


({ac} × {b}) ∪ ({df} × {e})

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


πi
(
({ac} × {b}) ∪ ({df} × {e})

)

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


πo
(
({ac} × {b}) ∪ ({df} × {e})

)

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


(
({ac} × {b}) ∪ ({df} × {e})

)−1

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Intersection

Recall from last week’s lecture that the regular languages—and thus
FSAs—are also closed under intersection, implemented with an algorithm
called composition. However, FSTs are not closed under intersection.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Composition

Composition is a generalization of intersection and relation chaining. Its
precise interpretation depends on whether the inputs are
languages/FSAs M, N or relations/FSTs µ, ν:

• M ◦ N yields their intersection M ∩ N.
• M ◦ ν yields {(a, b) | a ∈ M ∧ b ∈ ν[a]}; i.e., it restricts the domain
of ν by intersecting it with M.
• µ ◦ N yields {(a, b) | b ∈ µ[a] ∧ b ∈ N}; i.e., it restricts the range of
µ by intersecting it with N.
• µ ◦ ν yields {(a, c) | b ∈ µ[a] ∧ c ∈ ν[b]}; i.e., it chains the output
of µ to the input of ν.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Brie�y noted:
Associativity

Implementational details

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Rewrites

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Why rewrites?

• Grammarians, since at least Pān
˙
ini (�. 4th c. BCE), have conceived of

grammars not as sets of permissible strings but rather as a series of
rules which “rewrite” abstract inputs to produce surface forms.
• One particularly in�uential rule notation is the one popularized by
Chomsky and Halle (1968), henceforth SPE.
• Johnson (1972) proves this notation, with some sensible restrictions,
is equivalent to the rational relations and thus to �nite transducers.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Formalism

Let Σ be the set of symbols over which the rule will operate.

• For phonological rules, Σ might consist of all phonemes and their
allophones in a given language.
• For grapheme-to-phoneme rules, it would contain both graphemes
and phonemes.

Let s, t, l, r ∈ Σ∗. Then, the following is a possible rewrite rule.

s→ t / l r

where s→ t is the structural change and l and r as the environment. By
convention, l and/or r can be omitted when they are null (i.e., are ε).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Interpretation

The above rule can be read as “s goes to t between l and r”, and speci�es
a rational relation with domain and range Σ∗ such that all instances of lsr
are replaced with ltr, with all other strings in Σ∗ passed through.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Example

Let Σ = {a,b,c} and consider the following rule.

b→ a / b b

bbba → baba
abbbabbbc → ababababc

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Input: cbbca

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Output: cbbca

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Input: abbbba

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Output: ???

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Directionality

However, application is ambiguous with respect to certain input strings.

a. simultaneous application abaaba
b. left-to-right or right-linear application ababba
c. right-to-left or left-linear application abbaba

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Directional application

In SPE it is assumed that that all rules apply simultaneously (op. cit.,
343f.). However, Johnson (1972) adduces a number of phonological
examples where directional application—either left-to-right or
right-to-left—is required. However, note that directionality has no
discernable e�ect on many rules and can often be ignored.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Boundary symbols

Let ^, $ < Σ be boundary symbols disjoint from Σ. Now let ^, the
beginning-of-string symbol, to optionally appear as the leftmost symbol
in l, and permit $, the end-of-string-symbol, to optionally appear as the
rightmost symbol in r. These boundary symbols are not permitted to
appear elsewhere in l or r, or anywhere within the structural description
and change.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Example

Let Σ = {a,b,c} and consider the following rule.

b→ a / ^ b b

bbba → baba
abbbc → abbbc

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Generalization

We can generalize the elements of rules from single strings to languages
and relations. Then, a rewrite rule is speci�ed by a �ve-tuple consisting of

• an alphabet Σ,
• a structural change τ ⊆ Σ∗ × Σ∗,
• a left environment L ⊆ {^}?Σ∗,
• a right environment R ⊆ Σ∗{$}?, and
• a directionality (one of: “simultaneous”, “left-to-right”, or
“right-to-left”).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Brie�y noted:
Features

Abbreviatory devices
Constraint-based formalisms

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Rule compilation

Rules which apply at the end or beginning of a string are generally trivial
to express as a �nite transducer. For example, the following rules
prepend a pre�x p or append a su�x s, respectively.

∅ → {p} / ^ Σ∗

∅ → {s} / Σ∗ $

Such rules, respectively, correspond to the rational relations:

({ε} × {p}) Σ∗

Σ∗ ({ε} × {s})

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Challenges

Greater di�culties arise from the possibility of

• multiple sites for application and
• multiple overlapping contexts for application.

It thus proved challenging to develop a general-purpose algorithm for
compilation, and was not widely-known until the 1990s (e.g., Kaplan and
Kay, 1994; Karttunen, 1995). We review a generalization put forth by Mohri
and Sproat (1996), which builds a rewrite rule from a cascade of �ve
transducers, each a simple rational relation.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


The algorithm I

If X is a language, let X̄ denote its complement, the language consisting of
all strings not in X. Then, let <1, <2, >< Σ be marker symbols disjoint
from the alphabet Σ. L and R are acceptors de�ning the left and right
contexts, respectively. The constituent transducers are as follows:

• ρ inserts the > marker before all substrings matching R:
Σ∗R→ Σ∗ > R.

• φ inserts markers <1 and <2 before all substrings matching πi(τ) >:
(Σ ∪ {>})∗πi(τ) → (Σ ∪ {>})

∗{<1, <2}πi(τ). Note that this
introduces two paths, one with <1 and one with <2, which will
ultimately correspond, respectively, to the cases where L does/does
not occur to the left (see steps 4, 5 below).
• γ applies the structural change τ anywhere πi(τ), the input
projection of τ , is preceded by <1 and followed by >. It
simultaneously deletes the > marker everywhere.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


The algorithm II

• λ1 admits only those strings in which L is followed by the <1 marker
and deletes all <1 markers satisfying this condition: Σ∗L <1→ Σ∗L.
• λ2 admits only those strings in which all <2 markers are not
preceded by L and deletes all <2 markers satisfying this condition:
Σ∗L̄ <2→ Σ∗L̄

Then, the �nal context-dependent rewrite rule transducer is given by

T = ρ ◦ φ ◦ γ ◦ λ1 ◦ λ2

Slight variants are used for right-to-left and simultaneous transduction.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Schematic of γ

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Brie�y noted:
E�ciency considerations

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Demo

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


References I

N. Chomsky and M. Halle. Sound Pattern of English. Harper & Row, 1968.

C. D. Johnson. Formal Aspects of Phonological Description. Mouton, 1972.

R. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

L. Karttunen. The replace operator. In 33rd Annual Meeting of the
Association for Computational Linguistics, pages 16–23, 1995.

M. Mohri and R. Sproat. An e�cient compiler for weighted rewrite rules.
In 34th Annual Meeting of the Association for Computational
Linguistics, pages 231–238, 1996.

K. Thompson. Programming techniques: regular expression search
algorithm. Communications of the ACM, 11(6):419–422, 1968.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

	References

