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Rational relations
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Cross-product (redux) and rational relations

Recall that a cross-product (or Cartesian product) of two sets, X X Y, is the
set that contains all pairs (x, y) where x is an element of X and y is an
element of Y.

XXY={(x,y) | xeXAyeY}

Then, a rational relation is a subset of the cross-product of two regular
languages (e.g., y C A X B).
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Example: state abbreviations

y = {(AK,Alaska),
(AL,Alabama,
(AR,Arkansas),
(AZ,Arizona),
(CA,California),
(CO,Colorado),
(CT,Connecticut),
(DE,Delaware),

!
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Interpretation

Regular languages are languages, or sets of strings. Rational relations, in
turn, can either be thought of as

® sets of pair of (input and output) strings, or

® mappings between input and output strings.
Thus, we might say either that

e (OH,0hio) €y, or

* y[{OH}] = {Ohio}.
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Finite-state transducers
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Finite-state transducers

Finite-state transducers (FSTs) are generalizations of finite-state acceptors
which correspond to the rational relations. An FST is a 6-tuple defined by

a finite set of states Q,

a start or initial state s € Q,

a set of final or accepting states F C Q,

an input alphabet %,

an output alphabet ®, and

a transition relation 5§ C Q X (X U {e}) x (P U {e}) x Q.
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Transduction

An FST is said to transduce or map fromx € (X U {e})* toy € (d U {e})*
so long as a complete path with input string x and output string y exists.
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Paths

Given two states g, r € Q, input symbol x; € 2 U {€}, and output symbol
y;i € d U {e}, (g, x, i, r) € & implies that there is an arc from state g to
state r with input label x; and output label y;. A path through a finite
transducer is a triple consisting of

® astate sequence G;,G,,q;,.-- € Q" and a

® ainputstring x;, X5, X3, ... € (X U {e})",

® aoutputstringy,,y., Vs, ... € (P U{e})",

subject to the constraint that Vi € [1, n] : (Gi, Xi+1, Yi+1» Gi+1) € 6; that s,
there exists an arc from g; to gj4, labeled Xj1q : Vjt1.
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Complete paths

A path is said to be complete if

® (s,X,¥1,G41) € 6 and
® g, €F.

That is, a complete path must also begin with an arc from the initial state
s to g, labeled x, : y, and terminate at a final state. Then, an FST
transduces input string x € (X U {€})" to output stringy € (b U {e})" if
there exists a complete path with input string x and output string y.
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FSAs as FSTs

FSAs can be thought of as a special case of FSTs where every transition
has the same input and output label. This is why, in Pynini and friends,
FSAs are instance of a class called Fst.
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Even more about ¢

FSTs can map between strings of different lengths, but one must use €s to
“pad out” the shorter string. Thus, whereas every FSA has an equivalent
“e-free” FSA, not all e-FSTs have an equivalent “e-free” form. Thus, when
one applies the e-removal algorithm (e.g., Pynini’s rmepsilon
method) to FSTs, it simply removes € : € arcs.
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State abbreviations (fragment)
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Rational operations over FSTs

Rational relations—and thus FSTs—are closed under closure,
concatenation, and union, and the Thompson (1968) constructions for
these operations are also appropriate to FSTs.
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Projection

Projection converts a FST to an FSA that is either equal to its domain
(input-projection) or range (output-projection). By convention,
input-projection is indicated by the prefix operator s; and output-project
by 7,. Projection can be computed simply by copying all input

(resp. output) labels onto the output (resp. input) labels along each arc.
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Inversion

Inversion swaps the domain and range of an FST. By convention, it is
indicated by a superscripted —1. Inversion can be computed simply by
swapping input and output labels along each arc.
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({ac} x{b}) U ({df} x {e})
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mi ({ack x {b}) U ({df} x {e}))
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7o ({act x {b}) U ({df} x {e}))
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(({acy x {bhu ({df} x {e}))™
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Intersection

Recall from last week’s lecture that the regular languages—and thus
FSAs—are also closed under intersection, implemented with an algorithm
called composition. However, FSTs are not closed under intersection.
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Composition

Composition is a generalization of intersection and relation chaining. Its
precise interpretation depends on whether the inputs are
languages/FSAs M, N or relations/FSTs u, v:

® Mo Nyields their intersection M N N.

® Movyields {(a,b) | a € M A b € v[a]};i.e, it restricts the domain
of v by intersecting it with M.

® i o Nyields {(a,b) | b € u[a] A b € N}; i.e., it restricts the range of
M by intersecting it with N.

® uovyields {(a,c) | b € u[a] A c € v[b]};i.e, it chains the output
of u to the input of v.
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Briefly noted:
Associativity
Implementational details


http://wellformedness.com/courses/LING83800/

Rewrites
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Why rewrites?

® Grammarians, since at least Panini (fl. 4th c. BCE), have conceived of
grammars not as sets of permissible strings but rather as a series of
rules which “rewrite” abstract inputs to produce surface forms.

® One particularly influential rule notation is the one popularized by
Chomsky and Halle (1968), henceforth SPE.

® Johnson (1972) proves this notation, with some sensible restrictions,
is equivalent to the rational relations and thus to finite transducers.
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Formalism

Let 2 be the set of symbols over which the rule will operate.

® For phonological rules, > might consist of all phonemes and their
allophones in a given language.

® For grapheme-to-phoneme rules, it would contain both graphemes
and phonemes.

Lets,t,[,r € X*. Then, the following is a possible rewrite rule.
s—ot/l_r

where s — tis the structural change and [ and r as the environment. By
convention, [ and/or r can be omitted when they are null (i.e., are €).
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Interpretation

The above rule can be read as “s goes to t between [ and r”, and specifies
a rational relation with domain and range X* such that all instances of [sr
are replaced with [tr, with all other strings in 2* passed through.
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Example

Let < = {a, b, c} and consider the following rule.
b—sa/b_b

bbba — baba
abbbabbbc — ababababc
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Input: cbbca
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Output: cbbca
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Input: abbbba
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Output: ?2??
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Directionality

However, application is ambiguous with respect to certain input strings.

a. simultaneous application abaaba
b. left-to-right or right-linear application ababba
C. right-to-left or left-linear application ~ abbaba
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Directional application

In SPE it is assumed that that all rules apply simultaneously (op. cit.,
343f.). However, Johnson (1972) adduces a number of phonological
examples where directional application—either left-to-right or
right-to-left—is required. However, note that directionality has no
discernable effect on many rules and can often be ignored.
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Boundary symbols

Let ~,$ ¢ X be boundary symbols disjoint from Z. Now let ~, the
beginning-of-string symbol, to optionally appear as the leftmost symbol
in [, and permit S, the end-of-string-symbol, to optionally appear as the
rightmost symbol in r. These boundary symbols are not permitted to
appear elsewhere in [ or r, or anywhere within the structural description
and change.
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Example

Let < = {a, b, c} and consider the following rule.
b—-a/~b_b

bbba — baba
abbbc — abbbc
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Generalization

We can generalize the elements of rules from single strings to languages
and relations. Then, a rewrite rule is specified by a five-tuple consisting of
® an alphabet %,
® astructural changet C X" X X%,
® aleft environment L C {~}73",
® aright environment R C 3*{$}’, and

® adirectionality (one of: “simultaneous”, “left-to-right”, or
“right-to-left”).
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Briefly noted:
Features
Abbreviatory devices
Constraint-based formalisms
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Rule compilation

Rules which apply at the end or beginning of a string are generally trivial
to express as a finite transducer. For example, the following rules
prepend a prefix p or append a suffix s, respectively.

o — {pp/"_%*
2 — {s}/¥*_$

Such rules, respectively, correspond to the rational relations:

({e} x{p}) 2*
2" ({e} x {s})
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Challenges

Greater difficulties arise from the possibility of

® multiple sites for application and

® multiple overlapping contexts for application.

It thus proved challenging to develop a general-purpose algorithm for
compilation, and was not widely-known until the 1990s (e.g., Kaplan and
Kay, 1994; Karttunen, 1995). We review a generalization put forth by Mohri
and Sproat (1996), which builds a rewrite rule from a cascade of five
transducers, each a simple rational relation.
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The algorithm |

If X is a language, let X denote its complement, the language consisting of
all strings not in X. Then, let <4, <,, >¢ > be marker symbols disjoint
from the alphabet 2. L and R are acceptors defining the left and right
contexts, respectively. The constituent transducers are as follows:

® pinserts the > marker before all substrings matching R:
2R — X* > R.

® ¢ inserts markers <, and <, before all substrings matching m;(7) >:
ZU{>})'nri(t) = (ZU{>})"{<4, < }mi(T). Note that this
introduces two paths, one with <; and one with <,, which will
ultimately correspond, respectively, to the cases where L does/does
not occur to the left (see steps 4, 5 below).

® y applies the structural change T anywhere 7;(7), the input
projection of T, is preceded by <, and followed by >. It
simultaneously deletes the > marker everywhere.
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The algorithm Il

® A, admits only those strings in which L is followed by the <, marker
and deletes all <, markers satisfying this condition: Z*L <,— X*L.

® ), admits only those strings in which all <, markers are not
preceded by L and deletes all <, markers satisfying this condition:
2L <,— XL

Then, the final context-dependent rewrite rule transducer is given by

T=pogoyolol

Slight variants are used for right-to-left and simultaneous transduction.
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Schematic of y
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Briefly noted:
Efficiency considerations


http://wellformedness.com/courses/LING83800/

Demo
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