
Finite-state text
processing

Kyle Gorman

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Outline

• Motivations
• State machines
• Formalization
• Rational relations
• Finite-state transducers
• Break (?)
• Composition
• Rewrites
• OpenFst and friends
• Some new(ish) algorithms

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Motivations

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene 1956

Initially, the study of
• abstract computational devices known as state machines and
• formal languages

were considered independent of one another. Kleene (1956) was one of
the first to unify these two areas of study. Kleene wished to characterize
the properties of nerve nets (McCulloch and Pitts, 1943), a primitive form
of artificial neural network. In doing so, Kleene introduced the regular
languages and established strong connections between regular languages
and the finite acceptors, a type of state machine.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Introducing state machines

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

State machines

A state machine is hardware or software whose behavior can be described
solely in terms of a set of states and arcs, transitions between those
states. In this formalism, states roughly correspond to “memory” and arcs
to “operations” or “computations”. A finite-state machine is merely a
state machine with a finite, predetermined set of states and labeled arcs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

As directed graphs

State machines are examples of what computer scientists call directed
graphs. These are “directed” in the sense that the existence of an arc
from state q to state r does not imply an arc from r to q. In state
diagrams, we indicate this directionality using arrows.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

(image: credit: Wikimedia Commons)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The humble gumball machine

One familiar example of a state machine—encoded in hardware, rather
than software—is the old-fashioned gumball machine. Each state of the
gumball machine is associated with actions such as

• turning the knob,
• inserting a coin, or
• emitting a gumball.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Formalization

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Sets

A set is an abstract, unordered collection of distinct objects, the members
of that set. By convention capital Italic letters denote sets and lowercase
letters to denote their members. Set membership is indicated with the ∈
symbol; e.g., x ∈ X is read “x is a member of X”. The empty set is denoted
by ∅.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Subsets

A set X is said to be a subset of another set Y just in the case that every
member of X is also a member of Y. The subset relationship is indicated
with the ⊆ symbol; e.g., X ⊆ Y is read as “X is a subset of Y”. Every set is a
subset of itself; e.g., X ⊆ X.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Union and intersection

• The union of two sets, X ∪ Y, is the set that contains just those
elements which are members of X, Y, or both.

X ∪ Y = {x | x ∈ X ∨ x ∈ Y}
• The intersection of two sets, X ∩ Y, is the set that contains just those

elements which are members of both X and Y.

X ∩ Y = {x | x ∈ X ∧ x ∈ Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Strings

Let Σ be an alphabet (i.e., a finite set of symbols). A string (or word) is any
finite ordered sequence of symbols such that each symbol is a member of
Σ. By convention typewriter text is used to denote strings. The empty
string is denoted by ϵ (epsilon). String sets are also known as languages.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Concatenation and closure

• The concatenation of two languages, X Y, consists of all strings
formed by concatenating a string in X with a string in Y.

X Y = {xy | x ∈ X ∧ y ∈ Y}
• The closure of a language, X∗, is an infinite language consisting of

zero or more “self-concatenations” of X with itself.

X∗ ={ϵ} ∪ X1 ∪ X2 ∪ X3 . . .

={ϵ} ∪ X ∪ XX ∪ XXX . . .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Regular languages

• The empty language ∅ is a regular language.
• The empty string language {ϵ} is a regular language.
• If s ∈ Σ, then the singleton language {s} is a regular language.
• If X is a regular language, then its closure X∗ is a regular language.
• If X, Y are regular languages, then:

• their concatenation XY is a regular language, and
• their union X ∪ Y is a regular language.

• Other languages are not regular languages.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Regular languages in the 20th century

• Regular languages were popularized in part by discussion of the
Chomsky(-Schützenberger) hierarchy (e.g., Chomsky and Miller, 1963).

• Regular languages were used by Thompson (1968) to create the
grep regular expression matching utility.

• Finite acceptors are used to compactly store morphological
dictionaries.

• Finite acceptors are used to compactly represent language models,
particularly in speech recognition engines.

It now seems that an enormous amount of linguistically-interesting
phenomena can be described in terms of regular languages (and the
closely-related rational relations).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Negative results

At the same time, there were two important negative results:
• Syntactic grammars belong to a higher-classes of formal languages,

the mildly context-sensitive languages (Vijay-Shanker et al., 1987).
• The class of regular languages are not “learnable” from positive data

under Gold’s (1967) notion of language identification in the limit.

In practice, this means that regular languages and finite acceptors are
somewhat limited as models of syntax, though they are still well-suited
as models of phonology and morphology.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Cross-product

A pair or two-tuple is a sequence of two elements; e.g., (a, b) is the pair
consisting of a then b. The cross-product (or Cartesian product) of two
sets, X × Y, is the set that contains all pairs (x, y) where x is an element
of X and y is an element of Y.

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Relations

A (two-way or binary) relation over sets X and Y is a subset of the
cross-product X × Y. By convention lowercase Greek letters indicate
relations, and the domain—set of inputs—and range—the set of
outputs—are usually provided upon first definition. For example, the “less
than” relation might be written λ ⊆ Ò ×Ò = {(x, y) | x < y} where Ò is
the set of real numbers.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Functions

A function is a relation for which every element of the domain is
associated with exactly one element of the range.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Problem

Let Ò be the set of real numbers, and Î be the set of natural numbers.
Then, are the following relations functions?

• The “less than” relation λ ⊆ Ò ×Ò = {(x, y) | x < y}?
• The “successor” relation σ ⊆ Î × Î = {(x, x + 1) | x ∈ Î}?

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Solution

• λ is not a function because there are an infinitude of real numbers
that are greater than any other real number.

• σ is a function because each natural number has just one successor.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

N-ary relations

Three-, four- and five-way relations, and so on, are all well-defined,
though there is no such generalization for functions, since n-way
relations where n > 2 lack well-defined domain and range. However, one
can redefine any n-way relation into a two-way relation by grouping the
various sets into domain and range; for instance, a four-way relation over
A × B × C × D can be redefined as a two-way relation (and possibly, a
function) with domain A × B and range C × D.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Application

The application of an input argument to a relation or function is indicated
using square brackets. For instance given the successor function σ , then
σ [3] = {4} because (3, 4) ∈ σ .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Finite-state acceptors

An finite-state acceptor (FSA) is a 5-tuple defined by:
• a finite set of states Q,
• a start or initial state s ∈ Q,
• a set of final or accepting states F ⊆ Q,
• an alphabet Σ, and
• a transition relation δ ⊆ Q × (Σ ∪ {ϵ}) × Q.

Note that, as formalized here, there is exactly one start state but may be
multiple final states, and that the start state may also be a final state.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Acceptance

An FSA is said to accept, match, or recognize a string if there exists a path
from the initial state to some final state, and the labels of the arcs
traversed by that state correspond to the string in question. The set of all
strings so accepted are called the FSA’s language.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Paths

Given two states q, r ∈ Q and a symbol z ∈ Σ ∪ {ϵ}, (q, z, r) ∈ δ implies
that there is an arc from state q to state r with label z. A path through a
finite acceptor is a pair of

• a state sequence q1, q2, . . . , qn ∈ Qn and a
• a string z1, z2, . . . , zn ∈ (Σ ∪ {ϵ})n,

subject to the constraint that [i ∈ [1, n] : (qi, zi, qi+1) ∈ δ ; that is, there
exists an arc from qi to qi+1 labeled zi.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Complete paths

A path is said to be complete if
• (s, z1, q1) ∈ δ and
• qn ∈ F.

That is, a complete path must also begin with an arc from the initial state
s to q1 labeled z1 and terminate at a final state. Then, an FSA accepts
string z ∈ (Σ ∪ {ϵ})∗ if there exists a complete path with string z.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene’s theorem

Kleene’s theorem holds that any regular language is accepted by an FSA,
and any language accepted by an FSA is a regular language. This implies
that because regular languages are closed under closure, concatenation,
and union, so are FSAs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Reading the state diagrams

• States are indicated by circles.
• The initial state is indicated by a bold circle.
• Final states are indicated by double-struck circles.
• Labeled arrows indicate arcs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{aab}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{a}+

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{a}({b} ∪ {c})

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{ba}{a}+

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The sheep language

• Q = {0, 1, 2, 3}
• s = 0
• F = {3}
• Σ = {a,b}
• δ = {(0,b, 1), (1,a, 2), (2,a, 3), (3,a, 3)}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

All about ϵ

The ϵ symbol is a special one which does not match/consume any other
symbol. Every ϵ-FSA has an equivalent ϵ-free (or “e-free”) FSA that can be
found using the epsilon-removal algorithm (Mohri, 2002a).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rational relations

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Cross-product (redux) and rational relations

Recall that a cross-product (or Cartesian product) of two sets, X × Y, is the
set that contains all pairs (x, y) where x is an element of X and y is an
element of Y.

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y}

Then, a rational relation is a subset of the cross-product of two regular
languages (e.g., γ ⊆ A × B).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Example: state abbreviations

γ = {(AK,Alaska),
(AL,Alabama,
(AR,Arkansas),
(AZ,Arizona),
(CA,California),
(CO,Colorado),
(CT,Connecticut),
(DE,Delaware),
. . .}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Interpretation

Regular languages are languages, or sets of strings. Rational relations, in
turn, can either be thought of as

• sets of pair of (input and output) strings, or
• mappings between input and output strings.

Thus, we might say either that
• (OH,Ohio) ∈ γ, or
• γ [{OH}] = {Ohio}.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Finite-state transducers

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Finite-state transducers

Finite-state transducers (FSTs) are generalizations of finite-state acceptors
which correspond to the rational relations. An FST is a 6-tuple defined by

• a finite set of states Q,
• a start or initial state s ∈ Q,
• a set of final or accepting states F ⊆ Q,
• an input alphabet Σ,
• an output alphabet Φ, and
• a transition relation δ ⊆ Q × (Σ ∪ {ϵ}) × (Φ ∪ {ϵ}) × Q.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Transduction

An FST is said to transduce or map from x ∈ (Σ∪ {ϵ})∗ to y ∈ (Φ∪ {ϵ})∗
so long as a complete path with input string x and output string y exists.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Paths

Given two states q, r ∈ Q, input symbol xi ∈ Σ ∪ {ϵ}, and output symbol
yi ∈ Φ ∪ {ϵ}, (q, xi, yi, r) ∈ δ implies that there is an arc from state q to
state r with input label xi and output label yi. A path through a finite
transducer is a triple consisting of

• a state sequence q1, q2, q3, . . . ∈ Qn and a
• a input string x1, x2, x3, . . . ∈ (Σ ∪ {ϵ})n,
• a output string y1, y2, y3, . . . ∈ (Φ ∪ {ϵ})n,

subject to the constraint that [i ∈ [1, n] : (qi, xi+1, yi+1, qi+1) ∈ δ ; that is,
there exists an arc from qi to qi+1 labeled xi+1 : yi+1.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Complete paths

A path is said to be complete if
• (s, x1, y1, q1) ∈ δ and
• qn ∈ F.

That is, a complete path must also begin with an arc from the initial state
s to q1 labeled x1 : y1 and terminate at a final state. Then, an FST
transduces input string x ∈ (Σ ∪ {ϵ})n to output string y ∈ (Φ ∪ {ϵ})n

if there exists a complete path with input string x and output string y.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

FSAs as FSTs

FSAs can be thought of as a special case of FSTs where every transition
has the same input and output label. This is why, in Pynini and friends,
FSAs are instance of a class called Fst.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Even more about ϵ

FSTs can map between strings of different lengths, but one must use ϵs to
“pad out” the shorter string. Thus, whereas every FSA has an equivalent
“e-free” FSA, not all ϵ-FSTs have an equivalent “e-free” form. Thus, when
one applies the ϵ-removal algorithm (e.g., Pynini’s rmepsilon
method) to FSTs, it simply removes ϵ : ϵ arcs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

State abbreviations (fragment)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rational operations over FSTs

Rational relations—and thus FSTs—are closed under closure,
concatenation, and union, and the Thompson (1968) constructions for
these operations are also appropriate to FSTs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Projection

Projection converts a FST to an FSA that is either equal to its domain
(input-projection) or range (output-projection). By convention,
input-projection is indicated by the prefix operator πi and output-project
by πo. Projection can be computed simply by copying all input
(resp. output) labels onto the output (resp. input) labels along each arc.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Inversion

Inversion swaps the domain and range of an FST. By convention, it is
indicated by a superscripted −1. Inversion can be computed simply by
swapping input and output labels along each arc.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

({ac} × {b}) ∪ ({df} × {e})

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

πi
(
({ac} × {b}) ∪ ({df} × {e})

)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

πo
(
({ac} × {b}) ∪ ({df} × {e})

)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

(
({ac} × {b}) ∪ ({df} × {e})

)−1

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Intersection

Recall that the regular languages—and thus FSAs—are also closed under
intersection, implemented with an algorithm called composition.
However, FSTs are not closed under intersection.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Composition

Composition is a generalization of intersection and relation chaining. Its
precise interpretation depends on whether the inputs are languages/FSAs
M, N or relations/FSTs µ, ν:

• M ◦ N yields their intersection M ∩ N.
• M ◦ ν yields {(a, b) | a ∈ M ∧ b ∈ ν [a]}; i.e., it restricts the domain

of ν by intersecting it with M.
• µ ◦ N yields {(a, b) | b ∈ µ [a] ∧ b ∈ N}; i.e., it restricts the range of
µ by intersecting it with N.

• µ ◦ ν yields {(a, c) | b ∈ µ [a] ∧ c ∈ ν [b]}; i.e., it chains the output
of µ to the input of ν.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Associativity

Composition is associative and n-ary composition can be implemented by
a sequence of two-way compositions. Note however that for automata,
one bracketing into a sequence of two-way compositions—e.g., A ◦ B ◦ C
factored as the left-associative (A ◦ B) ◦ C versus the right-associative
A ◦ (B ◦ C)—may be far more efficient than other equivalent
associativities.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rewrites

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Why rewrites?

• Grammarians, since at least Pān
˙
ini (fl. 4th c. BCE), have conceived of

grammars not as sets of permissible strings but rather as a series of
rules which “rewrite” abstract inputs to produce surface forms.

• One particularly influential rule notation is the one popularized by
Chomsky and Halle (1968), henceforth SPE.

• Johnson (1972) proves this notation, with some sensible restrictions,
is equivalent to the rational relations and thus to finite transducers.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Formalism

Let Σ be the set of symbols over which the rule will operate.
• For phonological rules, Σ might consist of all phonemes and their

allophones in a given language.
• For grapheme-to-phoneme rules, it would contain both graphemes

and phonemes.

Let s, t, l, r ∈ Σ∗. Then, the following is a possible rewrite rule.

s → t / l r

where s → t is the structural change and l and r as the environment. By
convention, l and/or r can be omitted when they are null (i.e., are ϵ).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Interpretation

The above rule can be read as “s goes to t between l and r”, and specifies
a rational relation with domain and range Σ∗ such that all instances of lsr
are replaced with ltr, with all other strings in Σ∗ passed through.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Example

Let Σ = {a,b,c} and consider the following rule.

b→ a / b b

bbba → baba
abbbabbbc → ababababc

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Input: cbbca

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Output: cbbca

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Input: abbbba

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Output: ???

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Directionality

However, application is ambiguous with respect to certain input strings.

a. simultaneous application abaaba
b. left-to-right or right-linear application ababba
c. right-to-left or left-linear application abbaba

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Directional application

In SPE it is assumed that that all rules apply simultaneously (op. cit.,
343f.). However, Johnson (1972) adduces a number of phonological
examples where directional application—either left-to-right or
right-to-left—is required. However, note that directionality has no
discernable effect on many rules and can often be ignored.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Boundary symbols

Let ^, $ < Σ be boundary symbols disjoint from Σ. Now let ^, the
beginning-of-string symbol, to optionally appear as the leftmost symbol
in l, and permit $, the end-of-string-symbol, to optionally appear as the
rightmost symbol in r. These boundary symbols are not permitted to
appear elsewhere in l or r, or anywhere within the structural description
and change.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Example

Let Σ = {a,b,c} and consider the following rule.

b→ a / ^ b b

bbba → baba
abbbc → abbbc

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Generalization

We can generalize the elements of rules from single strings to languages
and relations. Then, a rewrite rule is specified by a five-tuple consisting of

• an alphabet Σ,
• a structural change τ ⊆ Σ∗ × Σ∗,
• a left environment L ⊆ {^}?Σ∗,
• a right environment R ⊆ Σ∗{$}?, and
• a directionality (one of: “simultaneous”, “left-to-right”, or

“right-to-left”).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Briefly noted:
Features

Abbreviatory devices
Constraint-based formalisms

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rule compilation

Rules which apply at the end or beginning of a string are generally trivial
to express as a finite transducer. For example, the following rules prepend
a prefix p or append a suffix s, respectively.

∅ → {p} / ^ Σ∗

∅ → {s} / Σ∗ $

Such rules, respectively, correspond to the rational relations:

({ϵ} × {p}) Σ∗

Σ∗ ({ϵ} × {s})

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Challenges

Greater difficulties arise from the possibility of
• multiple sites for application and
• multiple overlapping contexts for application.

It thus proved challenging to develop a general-purpose algorithm for
compilation, and was not widely-known until the 1990s (e.g., Kaplan and
Kay, 1994; Karttunen, 1995). We review a generalization put forth by Mohri
and Sproat (1996), which builds a rewrite rule from a cascade of five
transducers, each a simple rational relation.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The algorithm I

If X is a language, let X̄ denote its complement, the language consisting of
all strings not in X. Then, let <1, <2, >< Σ be marker symbols disjoint
from the alphabet Σ. L and R are acceptors defining the left and right
contexts, respectively. The constituent transducers are as follows:

• ρ inserts the > marker before all substrings matching R:
Σ∗R → Σ∗ > R.

• φ inserts markers <1 and <2 before all substrings matching πi(τ) >:
(Σ ∪ {>})∗πi(τ) → (Σ ∪ {>})∗{<1, <2}πi(τ). Note that this
introduces two paths, one with <1 and one with <2, which will
ultimately correspond, respectively, to the cases where L does/does
not occur to the left (see steps 4, 5 below).

• γ applies the structural change τ anywhere πi(τ), the input
projection of τ , is preceded by <1 and followed by >. It
simultaneously deletes the > marker everywhere.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The algorithm II

• λ1 admits only those strings in which L is followed by the <1 marker
and deletes all <1 markers satisfying this condition: Σ∗L <1→ Σ∗L.

• λ2 admits only those strings in which all <2 markers are not
preceded by L and deletes all <2 markers satisfying this condition:
Σ∗L̄ <2→ Σ∗L̄

Then, the final context-dependent rewrite rule transducer is given by

T = ρ ◦ φ ◦ γ ◦ λ1 ◦ λ2

Slight variants are used for right-to-left and simultaneous transduction.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Schematic of γ

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Briefly noted:
Efficiency considerations

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rule application

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rule application

To a first approximation, one can apply a rule ρ to a string i by compiling
both, composing (lattice construction), and then extracting the output
from the output projection πo(i ◦ ρ) (string extraction). In practice, there
are a few “gotchas” to watch out for.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Lattice construction

lattice = i @ rho
assert lattice.start() != pynini.NO_STATE_ID
lattice.project("output").rmepsilon()

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Simple string extraction

There are several ways to extract a string from the lattice:
• If one expects only a single string:

o = lattice.string()
• If one only wants the highest-weighted string:

o = pynini.shortestpath(lattice).string()

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Advanced string extraction

• If one wants the n-highest-weighted strings:

lattice = pynini.shortestpath(lattice,
nshortest=n,
unique=True)

for o in lattice.paths().ostrings():
...

• If one wants all the top-weighted strings:

lattice = pynini.determinize(lattice,
weight=0)

for o in lattice.paths().ostrings():
...

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst and friends

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst (Allauzen et al., 2007)

OpenFst is a open-source C++17 library for weighted finite state
transducers developed at Google. Among other things, it is used in:

• automatic speech(-to-text) recognizers (e.g., Kaldi and many
commercial products).

• text-to-speech synthesizers (as part of the “front-end”).
• input method engines (e.g., mobile text entry systems).
• many other kinds of text hacking.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Features

• One serialization format (.fst) is shared across all OpenFst and
OpenGrm libraries.

• FSTs can be compacted; e.g., unweighted string acceptors can be
stored as integer arrays.

• Collections of FSTs can be stored in FST archives (.far), a
shardable key-value store.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst design

There are (at least) four layers to OpenFst:
• a C++ template/header library in <fst/*.h>
• a C++ “scripting” library in <fst/script/*.{h,cc}>
• CLI programs in /usr/local/bin/*
• a Python extension module pywrapfst

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenGrm

• Baum-Welch (Gorman and Allauzen, 2024): CLI tools and libraries for
performing expectation maximization on WFSTs

• NGram (Roark et al., 2012): CLI tools and libraries for building
conventional n-gram language models

• Pynini (Gorman, 2016; Gorman and Sproat, 2021): Python extension
module for WFST grammar development

• SFst (Allauzen and Riley, 2018): CLI tools and libraries for building
stochastic FSTs

• Thrax (Roark et al., 2012): DSL-based compiler for WFST grammar
development

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

WFSTs: the later years

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

We are now a decade into what has been called “deep learning tsunami”
(Manning, 2015). Yet weighted finite-state transducers continue to play a
crucial role in industrial speech and language technologies.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

A battle between two great powers?

• knowledge-based vs. data-driven
• rationalism vs. empiricism
• neats vs. scruffies
• cowboys vs. aliens

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Text normalization

Many speech and language technologies map between “written” and
“spoken” representations of language. Text normalization (Sproat et al.,
2001) refers to mappings between pseudo-ideographic representations
like $4.20 to more pronounceable representations like four dollars and
twenty cents.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Semiotic categories (Ebden and Sproat, 2014)

• Cardinal: 69 → sixty nine
• Date: 11/2/1985 → November second nineteen eighty five
• Decimal: 23.3 → twenty three point three
• Electronic: kgorman@gc.cuny.edu → k gorman at gc dot cuny dot

edu
• Fraction: 2/5 → two fifths
• Measure: 12kg → twelve kilograms
• Money: $5.96 → five dollars and ninety six cents
• Ordinal: 69th → sixty ninth
• Roman numeral: LIV → fifty four
• Telephone: 566-6123 → five six six, six one two three
• Time: 11:58 → eleven fifty eight

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Wikipedia (“written” domain)

The giraffe has an extremely elongated neck, which can be up to 2 m (6 ft
7 in) in length, accounting for much of the animal’s vertical height. Each
cervical vertebra is over 28 cm (11 in) long. They comprise 52-54 percent
of the length of the giraffe’s vertebral column, compared with the 27–33
percent typical of similar large ungulates, including the giraffe’s closest
living relative, the okapi.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Wikipedia (“spoken” domain)

The giraffe has an extremely elongated neck, which can be up to two
meters (six feet seven inches) in length, accounting for much of the
animal’s vertical height. Each cervical vertebra is over twenty eight
centimeters (eleven inches) long. They comprise fifty two to fifty four
percent of the length of the giraffe’s vertebral column, compared with the
twenty seven to thirty three percent typical of similar large ungulates,
including the giraffe’s closest living relative, the okapi.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Applications

• In text-to-speech synthesis, the front-end is responsible for
providing pronunciations for semiotic classes.

• In automatic speech recognition:
• the written text used to train language models are converted to

spoken form.
• spoken form transcriptions from the recognizer are converted back

to written form (e.g., Shugrina, 2010; Pusateri et al., 2017).

• In information extraction, verbalizations can be used as a canonical
form for spoken and the various written forms of dates, times, etc.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Machine learning for text normalization at Google

• Sentence boundary detection (Sproat and Hall, 2014)
• English abbreviation expansion (Roark and Sproat, 2014; Gorman

et al., 2021)
• Grapheme-to-phoneme prediction (Jansche, 2014; Rao et al., 2015)
• Russian word stress prediction (Hall and Sproat, 2013)
• Number name generation (Gorman and Sproat, 2016; Ritchie et al.,

2019)
• Letter sequence prediction (Sproat and Hall, 2014)
• Homograph disambiguation (Gorman et al., 2018)
• End-to-end research (Ng et al., 2017; Sproat and Jaitly, 2017; Zhang

et al., 2019)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

But. . .

• Yet nearly all text normalization is still done with hand-written
language-specific grammars, just like 25 years ago (e.g., Sproat,
1996), not with sequence-to-sequence neural networks.

• The required native speaker-cum-computational-linguistic
sophistication needed to develop and maintain these grammars is
thin on the ground and this is the major barrier to
internationalization in speech technology.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Some new(ish) WFST algorithms

• general-purpose WFST optimization
• A* shortest string decoding over non-idempotent semirings

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

General-purpose WFST optimization

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Optimal for what?

There are many ways a WFST might be said to be optimal. For instance, a
WFST could be optimal for:

• composition efficiency (i.e., by eliminating internal ϵ-labels or
moving them later along paths).

• footprint in memory (i.e., by reducing the number of states and arcs).
• cache utilization or other application-specific use patterns.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Minimality

• An automaton is minimal if it expresses its (weighted) language or
relation using the minimal number of states.

• Efficient algorithms exist for minimizing deterministic automata (e.g.,
Mohri, 2000).

• However, finding an equivalent deterministic automaton for an
arbitrary WFST can be computationally expensive if not impossible.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Implementation

• Pynini Fst objects have a destructive instance method
optimize.

• Thrax has a function Optimize.

Both share the same C++ template implementation in optimize.h.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preprocessing

We first apply ϵ-removal (Mohri, 2002a) if the input WFST is not known to
be ϵ-free.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Optimizing acceptors

Not all acceptors are determinizable.
• Acceptors which do not have weights other than 0̄ and/or 1̄ along

their cycles—as well as acylic and unweighted acceptors—are
determinizable over a wide variety of semirings (Mohri, 2009). We
then apply determinization and minimization if the acceptor is not
known to be deterministic.

• However, it is difficult to determine whether determinization will
even terminate for cyclic weighted non-deterministic acceptors
(Allauzen and Mohri, 2003). Therefore, we heuristically apply
determinization and minimization to such acceptors viewed as
unweighted. This is guaranteed to halt.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Optimizing transducers

Similarly, not all transducers are determinizable.
• Even transducers without weighted cycles may be non-functional.

Therefore, we heuristically apply determinization and minimization
to such transducers viewed as acceptors. This is guaranteed to halt.

• For cyclic weighted transducers, we heuristically apply
determinization and minimization to such transducers viewed as
unweighted acceptors. This is also guaranteed to halt.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Postprocessing

When an weighted cyclic automaton is heuristically optimized as if it was
unweighted, we also apply arc-sum mapping as a post-processing step.
This eliminates trivial (i.e., same-state) cases of non-determinism due to
identically labeled arcs with different weights leaving the same state,
which may be introduced during heuristic determinization-minimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Finite transducer before optimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Equivalent finite transducer after optimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Evaluation

• We apply the above algorithm to a sample of 700 speech recognition
word lattices derived from Google Voice Search traffic, lattices
previously used Mohri and Riley (2015) to evaluate related
algorithms.

• Each lattice path represents a single hypothesis transcription from a
production-grade automatic speech recognizer.

• These lattices are acyclic and ϵ-free, non-deterministic, and
weighted, and thus the algorithm above is guaranteed to produce a
deterministic, minimal, ϵ-free acceptor.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Word lattice optimization with the proposed algorithm. The x-axis shows
the number of states before optimization; the y-axis shows the number of states
after optimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Results

• Optimization substantially reduces the number of states,
particularly for the larger lattices.

• The post-optimization “after” automaton is never larger than the
“before” automaton.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Related work

An earlier version of this algorithm was proposed by Allauzen et al. (2004).
The above evaluation is reported by Gorman and Sproat (2021, §4.5).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

A* shortest string decoding for
non-idempotent semirings

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Motivations

Various circumstances force us to build WFST models we cannot decode
efficiently or exactly due to restrictions on shortest-path algorithms. We
attempt to remedy these restrictions.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Three types of expectation maximization

• In vanilla EM (Dempster et al., 1977), we collect counts in semirings
isomorphic to Plus-Times.

• In Viterbi EM (Brown et al., 1993, 293), we collect counts in semirings
isomorphic to Max-Times.

• In lateen EM (Spitkovsky et al., 2011), we alternate between vanilla
and Viterbi EM according to some training schedule.

Yet there is no way to compute the shortest path in semirings isomorphic
to Plus-Times.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preliminaries

Without loss of generality, we consider single-source ϵ-free acyclic
acceptors, using z[p] = x[p] = y[p] to denote the string of a path p.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest distance

Let Pq→r be the set of all paths from q to r where q, r ∈ Q. Then:
• the forward shortest distance α ⊆ Q ×Ë maps from a state q ∈ Q to

the ⊕-sum of the ⊗-product of the weights of all paths from s to q:

α (q) =
⊕

p∈Ps→q

⊗
ki∈k[p]

ki.

• the backwards shortest distance β ⊆ Q × Ë maps from a state
q ∈ Q to the ⊕-sum of ⊗-product of the weights of all paths from q
to any final state:

β (q) =
⊕
f ∈F

©«
⊕

p∈Pq→f

⊗
ki∈k[p]

ki ⊗ ω (f)ª®¬ .
http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest path

• The total shortest distance through an automaton is given by β (s).
• The shortest path through an automaton is a complete path whose

weight is equal to β (s).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Automata over non-idempotent semirings need not have a shortest path.
Consider the figure above. If k ⊕ k ⪯ k < k′, then the total shortest distance is
k ⊕ k, which need not correspond to any one path.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest string

Let Pz be a set of paths with string z ∈ Σ∗, and let the weight of Pz be

σ (z) =
⊕
p∈Pz

k̄[p] .

Then a shortest string z is one such that [z′ ∈ Σ∗,σ (z) ⪯ σ (z′).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Lemma I

Lemma
In an idempotent semiring, a shortest path’s string is also a shortest
string.

Proof
Let p be a shortest path. By definition, k̄[p] ⪯ k̄[p′] for all complete
paths p′. It follows that

[z′ ∈ Σ∗ : σ (z[p]) =
⊕
p∈Pz

k̄[p] ⪯ σ (z′ [p′]) =
⊕
p′∈Pz

k̄[p′]

so z[p] is the shortest string.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Companion semirings

The companion semiring of a monotonic negative semiring (Ë, ⊕, ⊗, 0̄, 1̄)
with a total order ⪯ is the semiring (Ë, ⊕̂, ⊗, 0̄, 1̄) where ⊕̂ is the
minimum binary operator for ⪯:

a ⊕̂ b =

{
a if a ⪯ b

b otherwise

For example, the tropical semiring

(Ò ∪ {−∞, +∞},min, +, +∞, 0)

is the companion semiring for the log semiring

(Ò ∪ {−∞, +∞}, ⊕log, +, +∞, 0).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Lemma II

Lemma
In a DFA over a monotonic semiring, a shortest string is the string of a
shortest path in that DFA viewed over the corresponding companion
semiring.

Proof
Determinism implies that for all complete path p′, k̄[p′] = σ (z[p′]). Let
z be the shortest string in the DFA and p the unique path admitting the
string z. Then

k̄[p] = σ (z) ⪯ σ (z[p′]) = k̄[p′]

for any complete path p′. Hence

k̄[p] = �⊕
p′∈Ps→F

k̄[p′] .

Thus p is a shortest path in the DFA viewed over the companion semiring.
http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest-first search

Dijkstra’s (1959) algorithm is an example of a shortest-first search strategy
appropriate for idempotent semirings. At every iteration, the algorithm
explores the state q which minimizes α (q), the shortest distance from
the initial state s to q, until all states have been visited.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

A* search

In the variant known as A* search (Hart et al., 1968), search priority is
instead a function of 𭟋 ⊆ Q × Ë, known as the heuristic, which gives an
estimate of the weight of paths from some state to a final state. At every
iteration, A* instead explores the state q which minimizes α (q) ⊗ 𭟋(q).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Dijkstra again

Then, Dijkstra’s algorithm is just a special case of A* search using 𭟋 = 1̄.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Heuristics

A heuristic is:
• admissible if it never overestimates the shortest distance to a state.

That is, it is admissible if [q ∈ Q : 𭟋(q) ⪯ β (q).
• consistent if it never overestimates the cost of reaching a successor

state. That is, it is consistent if [q, r ∈ Q such that 𭟋(q) ⪯ k ⊗ 𭟋(r)
if (q, z, k, r) ∈ δ , i.e., if there is a transition from q to r with some
label z and weight k.

If 𭟋 is admissible and consistent, A* search is guaranteed to find a
shortest path (if one exists) after visiting all states such that 𭟋(q) ⪯ β (s)
(Hart et al., 1968, 104f.).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preliminaries

Consider an acyclic, ϵ-free WFSA over a monotonic negative semiring
(Ë, ⊕, ⊗, 0̄, 1̄) with total order ⪯ for which we wish to find the shortest
string. The same WFSA can also be viewed as a WFSA over the
corresponding companion semiring (Ë, ⊕̂, ⊗, 0̄, 1̄), and we denote by β̂
the backward shortest-distance over this companion semiring.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Proof I

Theorem
The backwards shortest distance of an WFSA over a monotonic negative
semiring is an admissible heuristic for the A* search over its companion
semiring.

Proof
In a monotonic negative semiring, the ⊕-sum of any n terms is
upper-bounded by each of the n terms and hence by the ⊕̂-sum of these
n terms. It follows that

β (q) =
⊕

p∈Pq→F

k̄[p] ⪯ �⊕
p∈Pq→F

k̄[p] = β̂ (q)

showing that 𭟋 = β is an admissible heuristic for β̂ .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Proof II

Theorem
The backwards shortest distance of an WFSA over a monotonic negative
semiring is a consistent heuristic for the A* search over its companion
semiring.

Proof
We again use the property that an ⊕-sum of any n terms is
upper-bounded by any of these terms. If (q, z, k, r) be a transition in δ

β (q) =
⊕

p∈Pq→F

k̄[p] =
⊕

(q,z′,k′,r′) ∈δ
k′ ⊗ β (r′) ⪯ k ⊗ β (r)

showing that 𭟋 = β is a consistent heuristic.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Naïve algorithm

A naïve algorithm suggests itself. Given a non-deterministic WFSA over
the monotonic negative semiring (Ë, ⊕, ⊗, 0̄, 1̄):

• apply determinization to obtain an equivalent DFA.
• compute βd, the DFA’s backwards shortest distance.
• perform A* search using βd as the heuristic.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Exponential blowup

Determinization has an exponential worse-case complexity in time and
space and is often prohibitive in practice. Yet determinization—and the
computation of elements of βd—only need to be performed for states
actually visited during search.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Our algorithm

Let βn denote backwards shortest distance over a non-deterministic
WFSA over the monotonic negative semiring (Ë, ⊕, ⊗, 0̄, 1̄). Then:

• compute βn over (Ë, ⊕, ⊗, 0̄, 1̄).
• lazily determinize the WFSA (Mohri, 1997), lazily computing βd from
βn over (Ë, ⊕, ⊗, 0̄, 1̄)

• perform A* search using βd as the heuristic over the companion
semiring (Ë, ⊕̂, ⊗, 0̄, 1̄).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Evaluation

We search for the shortest string over a sample of 700, acyclic, ϵ-free
non-deterministic WFSA word lattices derived from Google Voice Search
traffic. For this, we use the OpenGrm-BaumWelch command-line tool
baumwelchdecode to implement the above algorithm over the log
semiring, with the tropical semiring as the companion semiring.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Word lattice decoding with the proposed algorithm. The x-axis shows the
number of states in each word lattice NFA; the y-axis shows the number of states
visited by A* decoding. Both axes are log scale.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Results

• The relationship between the size of the NFA and the number of DFA
states visited by the proposed decoding method appears roughly
monomial (i.e., log-log linear).

• The size of the full DFA was measured by applying the OpenFst
command-line tool fstdeterminize to the lattices, which
produces an approximately 7x increase in the size of the lattices.

• From this we infer that the proposed heuristic substantially reduces
the number of DFA states that are visited.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Applications

Single shortest string over non-idempotent semirings can be used for
exact decoding of:

• interpolated (e.g., Jelinek et al., 1983) language models of the form

P̂(w | h) = λhP̃(w | h) + (1 − λh)P̂(w | h′).

• “decipherment” models (e.g., Knight et al., 2006) of the form

P̂(p | c) ∝ P(p)P(c | p)

trained with classic expectation maximization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

More information

openfst.org
opengrm.org

baumwelch.opengrm.org
ngram.opengrm.org
pynini.opengrm.org
thrax.opengrm.org
sfst.opengrm.org

http://wellformedness.com/courses/fstp/

openfst.org
opengrm.org
baumwelch.opengrm.org
ngram.opengrm.org
pynini.opengrm.org
thrax.opengrm.org
sfst.opengrm.org
http://wellformedness.com/courses/fstp/

Further reading

• Gorman and Sproat, 2021: introduces WFST text processing in Python
• Mohri, 2009: reviews major WFST algorithms
• Mohri, 2002b: discusses shortest-distance and shortest-path

algorithms

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References I

C. Allauzen and M. Mohri. Efficient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):
117–144, 2003.

C. Allauzen and M. Riley. Algorithms for weighted finite automata with
failure transitions. In Proceedings of the 23rd International Conference
on Implementation and Application of Automata, pages 46–58, 2018.

C. Allauzen, M. Mohri, M. Riley, and B. Roark. A generalized construction of
integrated speech recognition transducers. In International Conference
on Acoustics, Speech, and Signal Processing, pages 761–764, 2004.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: a
general and efficient weighted finite-state transducer library. In
Proceedings of the 12th International Conference on Implementation
and Application of Automata, pages 11–23, 2007.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References II

P. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The
mathematics of statistical machine translation: parameter estimation.
Computational Linguistics, 19(2):263–311, 1993.

N. Chomsky and M. Halle. Sound Pattern of English. Harper & Row, 1968.

N. Chomsky and G. A. Miller. Introduction to the formal analysis of natural
languages. In R. D. Luce, R. R. Bush, and E. Galanter, editors, Handbook
of Mathematical Psychology, pages 269–321. Wiley, 1963.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References III

P. Ebden and R. Sproat. The Kestrel TTS text normalization system.
Natural Language Engineering, 21:1–21, 2014.

E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

K. Gorman. Pynini: a Python library for weighted finite-state grammar
compilation. In ACL Workshop on Statistical NLP and Weighted
Automata, pages 75–80, 2016.

K. Gorman and C. Allauzen. A* shortest string decoding for
non-idempotent semirings. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computational Linguistics,
2024.

K. Gorman and R. Sproat. Minimally supervised models for number
normalization. Transactions of the Association for Computational
Linguistics, 4:507–519, 2016.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References IV

K. Gorman and R. Sproat. Finite-State Text Processing. Morgan & Claypool,
2021.

K. Gorman, G. Mazovetskiy, and V. Nikolaev. Improving homograph
disambiguation with supervised machine learning. In Proceedings of
the Eleventh International Conference on Language Resources and
Evaluation, pages 1349–1352, 2018.

K. Gorman, C. Kirov, B. Roark, and R. Sproat. Structured abbreviation
expansion in context. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 995–1005, 2021.

K. Hall and R. Sproat. Russian stress prediction using maximum entropy
ranking. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 879–883, 2013.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References V

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimal cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

M. Jansche. Computer-aided quality assurance of an Icelandic
pronunciation dictionary. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation, pages 2111–2114,
2014.

F. Jelinek, L. R. Bahl, and R. L. Mercer. A maximum likelihood approach to
continuous speech recognition. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 5:179–190, 1983.

C. D. Johnson. Formal aspects of phonological description. Mouton, 1972.

R. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VI

L. Karttunen. The replace operator. In 33rd Annual Meeting of the
Association for Computational Linguistics, pages 16–23, 1995.

S. C. Kleene. Representations of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

K. Knight, A. Nair, N. Rashod, and K. Yamada. Unsupervised analysis for
decipherment problems. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 499–506, 2006.

C. D. Manning. Last words: computational linguistics and deep learning.
Computational Linguistics, 41(4):701–707, 2015.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VII

M. Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997.

M. Mohri. Minimization algorithms for sequential transducers. Journal of
Automata, Languages and Combinatorics, 234(1–2):177–201, 2000.

M. Mohri. Generic epsilon-removal and input epsilon-normalization
algorithms for weighted transducers. International Journal of Computer
Science, 13(1):129–143, 2002a.

M. Mohri. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics, 7(3):
321–350, 2002b.

M. Mohri. Weighted automata algorithms. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of weighted automata, pages 213–254.
Springer, 2009.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VIII

M. Mohri and M. D. Riley. On the disambiguation of weighted automata. In
Proceedings of the 20th International Conference on Implementation
and Application of Automata, pages 263–278, 2015.

M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules.
In 34th Annual Meeting of the Association for Computational Linguistics,
pages 231–238, 1996.

A. H. Ng, K. Gorman, and R. Sproat. Minimally supervised
written-to-spoken text normalization. In ASRU, pages 665–670, 2017.

E. Pusateri, B. R. Ambati, E. Brooks, O. Platek, D. McAllaster, and V. Nagesha.
A mostly data-driven approach to inverse text normalization. In
Proceedings of INTERSPEECH, pages 2784–2788, 2017.

K. Rao, F. Peng, H. Sak, and F. Beaufays. Grapheme-to-phoneme
conversion using long short-term memory recurrent neural networks.
In ICASSP, pages 4225–4229, 2015.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References IX

S. Ritchie, R. Sproat, K. Gorman, D. van Esch, C. Schallhart, N. Bampounis,
B. Brard, J. F. Mortensen, M. Holt, and E. Mahon. Unified verbalization for
speech recognition & synthesis across languages. In Proceedings of
INTERSPEECH, pages 3530–3534, 2019.

B. Roark and R. Sproat. Hippocratic abbreviation expansion. In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 364–369,
2014.

B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen, and T. Tai. The
OpenGrm open-source finite-state grammar software libraries. In
Proceedings of the ACL 2012 System Demonstrations, pages 61–66, 2012.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References X

M. Shugrina. Formatting time-aligned ASR transcriptions for readability.
In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics, pages 198–206, 2010.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Lateen EM: unsupervised
training with multiple objectives, applied to dependency grammar
induction. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1269–1280, 2011.

R. Sproat. Multilingual text analysis for text-to-speech synthesis. Natural
Language Engineering, 2(4):369–380, 1996.

R. Sproat and K. Hall. Applications of maximum entropy rankers to
problems in spoken language processing. In INTERSPEECH, pages
761–764, 2014.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References XI

R. Sproat and N. Jaitly. An RNN model of text normalization. In
INTERSPEECH, pages 754–758, 2017.

R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and C. Richards.
Normalization of non-standard words. Computer Speech & Language,
15:287–333, 2001.

K. Thompson. Programming techniques: regular expression search
algorithm. Communications of the ACM, 11(6):419–422, 1968.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In 25th
Annual Meeting of the Association for Computational Linguistics, pages
104–111, 1987.

H. Zhang, R. Sproat, A. H. Ng, F. Stahlberg, X. Peng, K. Gorman, and
B. Roark. Neural models of text normalization for speech applications.
Computational Linguistics, 45(2):293–337, 2019.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Backup slides

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

	References

